The Heflin Center for Genomic Sciences Genomics Core Facility

Molly Bray, Ph.D

Michael R. Crowley, Ph.D

David Crossman, Ph.D

Our Mission

To provide cutting edge genetic and genomic technologies and expertise to the UAB Community

Microarray Technology and Services

- Affymetrix Resources
 - 3000 7G Scanner gene expression, genotyping, and promoter arrays
- Illumina Array Resources
 - iScan High density and high throughput genotyping, gene expression and methylation arrays
 - BeadXpress Medium density and throughput genotyping and methylation assays
 - Robotic fluidics for sample preparation

HiSeq2000

Library Preparation <6 h (<3 h hands-on)

Cluster Generation <4 h (<10 min hands-on)

Sequencing by Synthesis 1.5-8 days (<10 min hands-on)

RTA v1.7, CASAVA v1.7 2 days (30 min hands-on)

HiSeq 2000 Performance Parameters*

Read Length	Run Time	Output
1 × 35 bp	~1.5 days	26–35 Gb
2 × 50 bp	~4 days	75–100 Gb
2 × 100 bp	~8 days	150-200 Gb

^{*}Sequencing output generated with a PhiX library and cluster densities between 260,000-347,000 clusters/mm² that pass filtering on a HiSeq 2000.

Throughput

Up to 25 Gb per day for a 2×100 bp run.

Reads

Up to one billion clusters passing filter, and up to two billion pairedend reads.

Performance

HiSeq 2000 provides the greatest yield of perfect reads and bases greater than Q30:

Greater than 90% bases higher than Q30 at 2×50 bp**
Greater than 85% bases higher than Q30 at 2×100 bp**

**Human genome at supported cluster densities

Human Genome is ~3 billion base pairs or 3Gb of sequence information

The core runs 4 exomes/lane at 2X50bp reads generating ~35X coverage/sample

The HiSeq can generate up to 600 billion bases of sequence information in about 10 days An equivalent of 6 human genomes at 30X coverage

Techniques for Epigenetic Profiling

- Whole Genome Bisulfite Sequencing
- Reduced Representational Bisulfite Sequencing (RRBS)
- MeDIP
- ChIP-Seq
- SureSelect Methyl Capture
- Illumina Methyl 450 Arrays

Pyrosequencing

454 Sequencing is different in that it is whole genome while this pyrosequencing is at the gene/SNP level

Microarray vs. NGS: Sample Quality and Quantity

Microarray		Next Generation Sequencing		
Assay	Amount	Assay	Amount	
Gene expression	~300 ng total RNA	mRNA-Seq	1μg of Total RNA	
Methylation	500 ng DNA	Methyl-Seq	100ng* of ChIP'd DNA	
ChIP arrays	ChIP'd DNA	ChIP-Seq	100ng* of ChIP'd DNA	
Genotyping	200-400 ng DNA	Whole exome	2-3µg DNA	
		Whole genome	1μg DNA	

*Minimum amount

All assays work best with good quality, un-degraded sample.

Illumina has developed "rescue" reagents for FFPE samples that can greatly increase yield.

Microarray vs. NGS: Cost Comparison

Microarray		Next Generation Sequencing		
Assay	Cost*	Assay	Cost*	
Gene expression	\$245-\$650	mRNA-Seq	\$650 [§]	
Methylation	\$365	Methyl-Seq	\$650-2200 [†]	
ChIP-Chip	\$550	ChIP-Seq	\$650-2200 [†]	
Genotyping	\$80-\$620	Whole exome	\$800§	
		Whole genome	\$5,000 ^a	

^{*}Prices include labor and consumables and are subject to change

NGS analysis is always going to provide more comprehensive data than an off-the-shelf microarray.

[§]Price reflects running 28 samples per flowcell on HiSeq2000

[†]Prices reflect running several samples per lane v. one sample per lane

^aPrice is for running 3 genomes per flowcell

Thank You

Contacts:

Mike Crowley mcrowley@uab.edu 5-2013

David Crossman dkcrossm@uab.edu

Molly Bray mbray@uab.edu