
RNA sequencing (RNA-​seq) was developed more than a 
decade ago1,2 and since then has become a ubiquitous tool 
in molecular biology that is shaping nearly every aspect 
of our understanding of genomic function. RNA-​seq is 
most often used for analysing differential gene expression 
(DGE). The essential stages of a DGE assay have not 
changed substantially from the earliest publications. 
The standard workflow begins in the laboratory, with 
RNA extraction, followed by mRNA enrichment or ribo
somal RNA depletion, cDNA synthesis and preparation 
of an adaptor-​ligated sequencing library. The library is 
then sequenced to a read depth of 10–30 million reads 
per sample on a high-​throughput platform (usually 
Illumina). The final steps are computational: aligning 
and/or assembling the sequencing reads to a trans
criptome, quantifying reads that overlap transcripts, 
filtering and normalizing between samples, and statis-
tical modelling of significant changes in the expression 
levels of individual genes and/or transcripts between 
sample groups. Early RNA-​seq experiments generated 
DGE data from bulk tissue and demonstrated its use 
across a wide range of organisms and systems, including  
Zea mays1, Arabiodopsis thaliana2, Saccharomyces cerevisae3,  
Mus musculus4 and Homo sapiens5,6. While the term 
RNA-​seq is often used as a catch-​all for very different 
methodological approaches and/or biological applica-
tions, DGE analysis remains the primary application of 
RNA-​seq (Supplementary Table 1) and is considered a 
routine research tool.

Broader applications of RNA-​seq have shaped our 
understanding of many aspects of biology, such as by 
revealing the extent of mRNA splicing7 and the regu-
lation of gene expression by non-​coding RNAs8,9 and 
enhancer RNAs10. The adaptation and evolution of 

RNA-​seq has been driven by technological develop
ments (both wet-​lab and computational) and has ena-
bled a richer and less biased view of RNA biology and 
the transcriptome than was possible with previous 
microarray-​based methods. To date, almost 100 distinct 
methods have been derived from the standard RNA-​seq  
protocol11. Much of this method development has been 
achieved on Illumina short-​read sequencing instru-
ments, but recent advances in long-​read RNA-​seq and 
direct RNA sequencing (dRNA-​seq)12–14 methods are ena-
bling users to ask questions not answerable with Illumina 
short-​read technologies.

In this Review, we begin by establishing a ‘baseline’ 
short-​read RNA-​seq assay for DGE before comparing 
and contrasting standard short-​read approaches with the 
emerging long-​read RNA-​seq15,16 and dRNA-​seq techno
logies12–14. We describe the developments in library prepa-
ration for short-​read sequencing protocols, practices in  
experimental design and computational workflows that 
have made DGE analysis so pervasive. We then look at 
developments that go beyond bulk RNA-​seq for DGE, 
including single-​cell and spatially resolved transcrip-
tome analysis. We provide examples of how RNA-​seq has 
been adapted to investigate key aspects of RNA biology, 
including analysis of transcriptional and translational 
dynamics, RNA structure, and RNA–RNA and RNA–
protein interactions. We finish by briefly discussing the 
likely future for RNA-​seq, whether single-​cell and spatial 
RNA-​seq methods will become as routine as DGE analy
sis, and in what niches long reads might replace short 
reads for RNA-​seq analysis. Space limitations prevent 
us from covering all RNA-​seq methods; notable omis-
sions include analysis of non-​coding transcriptomes17,18, 
prokaryotic transcriptomes19,20 and epitranscriptomes21,22.

Differential gene expression
(DGE). The analysis methods 
that together allow users to 
determine the quantitative 
changes in expression levels 
between experimental groups.

Read depth
The total number of 
sequencing reads obtained for 
a sample. This should not be 
confused with coverage, or 
sequencing depth, in genome 
sequencing, which refers to 
how many times individual 
nucleotides are sequenced.

Short-​read
Sequencing technologies  
that generate reads of up to 
500 bp, more commonly 
100–300 bp, that represent 
fragmented or degraded 
mRNAs.
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Advances in RNA-​seq technologies
The Illumina short-​read sequencing technology has been 
used to generate more than 95% of the published RNA-​
seq data available on the Short Read Archive (SRA)23 
(Supplementary Table 2). As short-​read sequencing of 
cDNA comprises nearly all publicly available mRNA-​seq 
data, we consider this the baseline RNA-​seq technology 
and discuss the primary workflow and its limitations. 
However, long-​read cDNA sequencing and, most recently, 
dRNA-​seq methods may soon present a challenge to its 
dominance, as users seek out methods that can deliver 
improved isoform-​level data (Fig. 1; Table 1).

Short-​read cDNA sequencing for DGE. Short-​read 
sequencing has become the de facto method to detect 
and quantify transcriptome-​wide gene expression, 
partly because it is cheaper and easier to implement 
than microarrays but primarily because it generates 
comprehensive, high-​quality data that capture quan-
titative expression levels across the transcriptome. 
The core steps of a DGE assay using the Illumina short-​
read sequencing platform include RNA extraction, 
cDNA synthesis, adaptor ligation, PCR amplification, 
sequencing and analysis (Fig. 1). This protocol results 
in cDNA fragments that are usually under 200 bp in 
length, due to mRNA fragmentation and size selection 

of 150- to 200-bp fragments during bead-​based library 
purification. The RNA-​seq library is sequenced to an 
average of 20–30 million reads per sample, and the data 
are computationally processed to determine the frac-
tion of reads associated with individual genes or trans
cripts before being subject to a statistical analysis (see 
RNA-​seq data analysis). Short-​read RNA-​seq is robust, 
and large-​scale comparisons of short-​read sequencing 
technologies for RNA-​seq have reported high intra-​
platform and inter-​platform correlations24,25. However, 
there are a number of points in the process, during 
both the sample preparation and computational analy
sis phases, at which imperfections and biases may be 
introduced. These limitations may affect the ability of 
the experiment to address specific biological questions, 
such as correctly identifying and quantifying which 
of multiple isoforms are expressed from a gene8. This 
example is particularly relevant to very long, or highly 
variable, transcript isoforms such as those found in the 
human transcriptome; 50% of transcripts are >2,500 bp 
long in humans26, with a range from 186 bp to 109 kb 
(ref.27). Although short-​read RNA-​seq allows detailed 
analysis of even the longest transcripts, the required 
protocols do not scale to whole-​transcriptome analy-
sis28,29. Other biases and limitations can result from the 
myriad computational methods that can be applied to 
RNA-​seq data, such as differences in how ambiguous or 
multi-​mapped reads are handled (see RNA-​seq data analy
sis). A novel approach to generating synthetic long reads 
enables full-​length mRNA sequencing and attempts to 
address some of these limitations30. It does so by tag-
ging full-​length cDNAs with unique molecular identifiers 
(UMIs)31–34, which are copied across the length of 
individual cDNA molecules before preparation of a 
short-​read RNA-​seq library. Transcript isoforms can be 
reconstructed in contigs of up 4 kb for isoform discovery 
and expression analysis. However, the greatest potential 
for fundamentally addressing the inherent limitations of 
short-​read cDNA sequencing lies with long-​read cDNA 
sequencing and dRNA-​seq methods.

Long-​read cDNA sequencing. Although Illumina 
sequencing is currently the dominant RNA-​seq plat-
form, both Pacific Biosciences (PacBio) and Oxford 
Nanopore (ONT) provide alternative long-​read techno
logies that enable single-​molecule sequencing of com-
plete individual RNA molecules after conversion to 
cDNA15,16,35. By removing the need for the assembly of 
short RNA-​seq reads, these approaches overcome some 
of the issues associated with short-​read approaches. 
For example, ambiguity in the mapping of sequence 
reads is reduced, and longer transcripts can be identi-
fied, which leads to a more complete capture of isoform 
diversity. Also reduced is the high rate of false-​positive 
splice-​junction detection by many short-​read RNA-​seq 
computational tools36.

The development of Iso-​Seq for the PacBio techno
logy enabled the generation of full-​length cDNA reads 
for transcripts up to 15 kb, which facilitated the discovery 
of large numbers of previously unannotated transcripts 
and confirmed earlier gene predictions by detecting 
full-​length homologous sequences across species15,16,37. 

Fig. 1 | short-​read, long-​read and direct RnA-​seq technologies and workflows.  
a | Shown is an overview of library preparation methods for different RNA-​sequencing 
(RNA-​seq) methods, which can be categorized as short-​read sequencing (black), long-​
read cDNA sequencing (green) or long-​read direct RNA-​seq (blue). The complexity and 
bias of library preparation varies according to the specific approach used. The short-​read 
and long-​read cDNA methods share many of the same steps in their protocols, but all 
methods require an adaptor ligation step and all are affected by sample quality and 
computational issues upstream and downstream of library preparation. b | An overview  
is shown of the three main sequencing technologies for RNA-​seq. The Illumina workflow 
(left panel): after library preparation, individual cDNA molecules are clustered on a 
flowcell for sequencing by synthesis using 3΄ blocked fluorescently labelled nucleotides. 
In each round of sequencing, the growing DNA strand is imaged to detect which of the 
four fluorophores has been incorporated, and reads of 50–500 bp can be generated.  
The Pacific Biosciences workflow (middle panel): after library preparation, individual 
molecules are loaded into a sequencing chip, where they bind to a polymerase immobilized 
at the bottom of a nanowell. As each of the fluorescently labelled nucleotides is 
incorporated into the growing strand, they fluoresce and are detected, and reads of up 
to 50 kb can be generated. The Oxford Nanopore workflow (right panel): after library 
preparation, individual molecules are loaded into a flowcell, where motor proteins,  
which are attached during adaptor ligation, dock with nanopores. The motor protein 
controls the translocation of the RNA strand through the nanopore, causing a change  
in current that is processed to generate sequencing reads of 1–10 kb. c | Comparison  
of short-​read, long-​read and direct RNA-​seq analysis. Over 90% of human genes  
(gene n) are alternatively spliced to form two or more distinct and expressed isoforms 
(transcripts x and y). The complexity of information captured increases from short-​read 
cDNA sequencing, where isoform detection can be compromised by reads that cannot 
be mapped unambiguously, to long-​read methods that directly sequence isoforms. 
In short-​read cDNA sequencing, a significant proportion of reads map ambiguously  
when an exon is shared between isoforms; reads that span exon–exon junctions can  
be used to improve the isoform analysis but can also be mapped ambiguously when  
a junction is shared between isoforms. These issues complicate analysis and the 
interpretation of results. Long-​read cDNA methods can generate full-​length isoform 
reads that remove, or substantially reduce, these artefacts and improve differential 
isoform expression analysis. However, these methods rely on cDNA conversion, which 
removes information about RNA base modifications and can only make crude estimates 
of polyadenylation (poly(A)) tail length. Direct RNA-​seq enables full-​length isoform 
analysis, base modification detection (such as N6-methyladenosine (m6A)) and poly(A) 
tail length estimation.

Long-​read
Sequencing technologies  
that generate reads of over 
1,000 bp that represent either 
full-​length or near-​full-length 
mRNAs.

Direct RNA sequencing
(dRNA-​seq). Sequencing 
technologies that generate 
reads by directly sequencing 
RNA without modification or 
reverse transcription, usually 
with the aim of sequencing  
full-​length or near-​full-length 
mRNAs.

Multi-​mapped reads
Sequencing reads from 
homologous regions of the 
transcriptome that cannot be 
unambiguously mapped to  
the transcriptome or genome.

Synthetic long reads
A method for generating long 
reads from multiple short  
reads by assembly.

◀
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In the standard Iso-​Seq protocol, high-​quality RNA is 
converted to full-​length cDNA for sequencing using a 
template-​switching reverse transcriptase38,39. The result-
ing cDNAs are PCR amplified and used as the input for 
PacBio single-​molecule, real-​time (SMRT) library prepa-
ration. Owing to a bias in the sequencing of short tran-
scripts, which diffuse more quickly to the active surface 
of the sequencing chip, size selection is recommended for 
transcripts from 1 to 4 kb, to allow more equal sampling 
of long and short transcripts in this size range. Due to the 
large amount of template required for PacBio sequencing, 
a large-​volume PCR is performed, which requires optimi-
zation in order to reduce the impact of overamplification. 
After PCR end-​repair and PacBio SMRT-​adaptor liga-
tion, long-​read sequencing is performed; size selection 
bias can be further controlled at this step by modifying 
the loading conditions of the sequencing chip40.

ONT cDNA sequencing also generates full-​length 
transcript reads35,41, even from single cells14. Template-​
switching reverse transcription is again used to prepare 
full-​length cDNAs, which can be optionally amplified 
by PCR, before adaptors are attached in order to create 
a sequencing library. Direct cDNA sequencing removes 
PCR bias, leading to higher-​quality results; however, 
the sequencing yields (numbers of reads) are higher for 
PCR-​amplified cDNA libraries, which enables users to 
start with much smaller amounts of input RNA. The size 
selection bias observed for PacBio instruments has not 
been reported for ONT cDNA sequencing.

Both of these long-​read cDNA methods are limited 
by the use of the standard template-​switching reverse 

transcriptase, which generates cDNA from full-​length 
RNAs as well as truncated RNAs. Reverse transcriptases 
are available that convert only 5ʹ-capped mRNAs to 
cDNA16, which improves data quality by reducing the 
amount of cDNA generated from transcripts truncated 
by RNA degradation, RNA shearing or incomplete 
cDNA synthesis. However, these reverse transcriptases 
have been shown to negatively affect read length on the 
ONT platform42.

Long-​read direct RNA sequencing. The long-​read 
methods discussed above, like the baseline short-​read 
platform, rely on converting mRNA to cDNA before 
sequencing. Oxford Nanopore recently demonstrated 
that their nanopore sequencing technology43,44 can be 
used to sequence RNA directly12,45 — that is, without 
modification, cDNA synthesis and/or PCR amplifica-
tion during library preparation. This approach, termed 
dRNA-​seq, removes the biases generated by these pro-
cesses and enables epigenetic information to be retained. 
Library preparation from RNA involves sequential liga-
tion of two adaptors. First, a duplex adaptor bearing an 
oligo(dT) overhang is annealed and ligated to the RNA 
polyadenylation (poly(A)) tail, which is followed by an 
optional (but recommended) reverse-​transcription step 
that improves the sequencing throughput. The second 
ligation step attaches the sequencing adaptors, which are 
pre-​loaded with the motor protein that drives sequenc-
ing. The library is then ready for MinION sequencing, in 
which RNA is sequenced directly from the 3ʹ poly(A) tail 
to the 5ʹ cap. Initial studies demonstrated that dRNA-​seq 

Table 1 | comparison of short-​read and long-​read RnA-​seq platforms

sequencing 
technology

Platform Advantages Disadvantages Key applications

Short-​read 
cDNA

Illumina, 
Ion Torrent

• Technology features very high throughput: 
currently 100–1,000 times more reads per 
run than long-​read platforms

• Biases and error profiles are well understood 
(homopolymers are still an issue for Ion 
Torrent)

• A huge catalogue of compatible methods 
and computational workflows are available

• Analysis works with degraded RNA

• Sample preparation includes reverse 
transcription, PCR and size selection 
adding biases to all methods

• Isoform detection and quantitation 
can be limited

• Transcript discovery methods 
require a de novo transcriptome 
alignment and/or assembly step

Nearly all RNA-​seq methods 
have been developed for  
short-​read cDNA sequencing: 
DGE, WTA, small RNA, 
single-​cell, spatialomics, 
nascent RNA, translatome, 
structural and RNA–protein 
interaction analysis, and more 
are all possible

Long-​read 
cDNA

PacBio, 
ONT

• Long reads of 1–50 kb capture many  
full-​length transcripts

• Computational methods for de novo 
transcriptome analysis are simplified

• Technology features low-​to-medium 
throughput: currently only 500,000 
to 10 million reads per run

• Sample preparation includes reverse 
transcription, PCR and size selection 
(for some protocols), adding biases 
to many methods

• Degraded RNA analysis is not 
recommended

Sequencing is particularly 
suited to isoform discovery, 
de novo transcriptome 
analysis, fusion transcript 
discovery, and MHC, HL A 
or other complex transcript 
analysis

Long-​read 
RNA

ONT • Long reads of 1–50 kb capture many  
full-​length transcripts

• Computational methods for de novo 
transcriptome analysis are simplified

• Sample preparation does not require reverse 
transcription or PCR-​reducing biases

• RNA base modifications can be detected
• Poly(A) tail lengths can be directly estimated 

from single-​molecule sequencing

• Technology features low throughput: 
currently only 500,000 to 1 million 
reads per run

• Sample preparation and sequencing 
biases are not well understood

• Degraded RNA analysis is not 
recommended

• Sequencing is particularly 
suited to isoform discovery, 
de novo transcriptome 
analysis, fusion transcript 
discovery, and MHC, HL A 
or other complex transcript 
analysis

• Ribonucelotide modifications 
can be detected

The table provides a high-​level overview of the advantages and disadvantages of the three major sequencing technologies for RNA sequencing (RNA-​seq).  
DGE, differential gene expression; HL A, human leukocyte antigen; MHC, major histocompatibility complex; ONT, Oxford Nanopore; PacBio, Pacific Biosciences; 
poly(A), polyadenylation; WTA, whole-​transcriptome analysis.

Unique molecular identifiers
(UMIs). Short sequences or 
barcodes usually added during 
RNA sequencing (RNA-​seq) 
library preparation (but also  
by direct RNA ligation), before 
amplification, that mark a 
sequence read as coming from 
a specific starting molecule. 
The approach is used to reduce 
the quantitative biases of  
RNA-​seq and is particularly 
useful in low-​input or single-​cell 
experiments.

Read length
The length of the individual 
sequencing reads, which is 
usually 50–150 bp for  
short-​read RNA sequencing.
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generates read lengths of around 1,000 bp, with maxi
mum lengths exceeding 10 kb (refs12,45,46). These long 
reads have several advantages over short reads: they 
can improve isoform detection compared with short 
reads, and they can also be used to estimate poly(A) tail 
length, which is important for alternative poly(A) analy
sis (see Improved RNA-​seq library preparation). The 
nanopolish-​polya tool uses nanopore data to measure 
poly(A) tail lengths, both between genes and between 
transcript isoforms. This analysis has confirmed that 
transcripts that retain introns have marginally longer 
poly(A) tails than completely spliced transcripts45. 
Finally, although still in its infancy, dRNA-​seq has the 
potential to detect RNA base modifications and there-
fore has huge potential to enable new insights into the 
epitranscriptome, in particular12,22,45,47.

Comparing long-​read and short-​read technologies. 
Although long-​read technologies have some clear 
advantages over short-​read sequencing for evaluating 
transcriptomes, they have some distinct limitations, 
as well. In particular, long-​read platforms suffer from 
much lower throughput and much higher error rates 
than more mature short-​read platforms. The main 
advantages of long reads — their ability to capture more 
of individual transcripts — are additionally dependent 
on having high-​quality RNA libraries as input. Together, 
these limitations can affect the sensitivity and specificity of 
experiments that rely exclusively on long reads.

The major limitation of long-​read sequencing methods  
is currently their throughput. While a single RNA-​seq 
run on an Illumina platform can generate 109–1010 short 
reads, experiments performed with the PacBio and ONT 
platforms will generate 106–107 reads per run. This low 
throughput limits the size of experiments that can be 
undertaken with long-​read sequencing and reduces the 
sensitivity of differential gene expression. However, high 
read depth is not necessary for all applications. Users 
primarily interested in isoform discovery and char-
acterization will consider read length to be of greater 
importance than read depth. Obtaining a long read from 
highly expressed genes of >1 kb is almost guaranteed 
with 1 million PacBio circular consensus-​sequencing 
(CCS) reads48, and this situation is likely to be the same 
using ONT technology. As such, read depth is primarily 
an issue for genes expressed at low to medium levels. 
The limitation of lower throughput is most obvious 
when performing the large-​scale DGE experiments 
required for contemporary functional genomics analysis.  
In these studies, multiple sample groups, each consist-
ing of multiple replicates (see Designing better RNA-​seq 
experiments), must be profiled in order to attain suffi-
cient statistical power to have confidence that changes 
in expression across the transcriptome are being char-
acterized accurately. For these applications, long-​read 
technologies are unlikely to supplant short-​read plat-
forms until their throughput can be improved by at least 
two orders of magnitude. As the number of full-​length 
RNA-​seq reads increases, transcript detection sensitivity 
will increase to levels similar to those seen on Illumina, 
but with even higher specificity. In the meantime, by 
combining Illumina short-​read RNA-​seq with PacBio 

long-​read Iso-​Seq (and presumably also with ONT 
methods), it is possible to increase the number, sensi-
tivity and specificity of full-​length RefSeq-​annotated 
isoform detection, while maintaining the quality of tran-
script quantification48,49. Although long-​read RNA-​seq  
methods currently have higher experimental costs, they 
can detect isoforms that are missed by short-​read meth-
ods, particularly in regions that are difficult to sequence 
yet clinically relevant, such as the highly polymorphic 
human major histocompatibility complex50 or the 
androgen receptor51.

The next important limitation of long-​read sequenc-
ing platforms is their higher error rates, which are one 
or two orders of magnitude higher than those seen 
with mature Illumina machines46. Data generated from 
the platforms also contain more insertion–deletion 
errors52. While these error rates are of concern for 
variant calling, in RNA-​seq it is less crucial that every 
base be called correctly, as the goal is only to disam-
biguate transcripts and isoforms. For applications in 
which the error rate is a concern, there are potential 
mitigations. The random errors that typically occur 
on the PacBio SMRT sequencing platform can be mit-
igated by increasing the read depth53 using CCS. In 
this approach, cDNAs are size-​selected and circular-
ized using adaptors so that each molecule is sequenced 
multiple times, generating continuous long reads that 
vary from >10–60 kb in length and that contain many 
copies of the original cDNA. These long reads are pro-
cessed computationally into individual cDNA subreads, 
which are combined in order to generate the consensus 
sequence. The more times the molecule is sequenced,  
the lower the resulting error rate; CCS has been shown to 
reduce error rates to short-​read levels, or even lower15,54.  
However, devoting more of the sequencing power of 
this platform to re-​reading the same molecule exac-
erbates the throughput issues, as even fewer unique 
transcripts can be read.

The sensitivity of long-​read RNA-​seq methods is also 
limited by several other factors. First, they depend on 
long RNA molecules being present as full-​length tran-
scripts, which is not always possible, because of RNA 
degradation or shearing during sample handling and 
RNA extraction. Although this leads to a controllable 
3ʹ bias in short-​read RNA-​seq data, even low levels of 
RNA degradation will limit long-​read RNA-​seq for users 
interested primarily in full-​length transcriptome analy-
sis. As such, prospective users need to carefully control 
the quality of the samples used after RNA extraction. 
Second, median read lengths are further constrained 
by technical issues and biases in library preparation, 
such as truncation of cDNA synthesis or synthesis of 
degraded mRNAs16. These processes may be improved 
by the recent development of highly processive reverse 
transcriptases, which generate better strand specificity 
and more even 3ʹ–5ʹ transcript coverage55,56. Although 
not yet widely adopted, these highly processive reverse 
transcriptases also improve coverage of structurally 
stable RNAs (such as tRNAs), which the reverse tran-
scriptases commonly used in the oligo-​dT and whole-​
transcriptome analysis (WTA) methods struggle to 
process. Third, biases inherent to sequencing platforms 

Sensitivity
A measure of the proportion  
of transcripts present in the 
sample that are detected. It is 
affected by sample handling, 
library preparation, sequencing 
and computational biases.

Specificity
A measure of the proportion  
of differentially expressed 
transcripts that are correctly 
identified. It is affected by 
sample handling, library 
preparation, sequencing and 
computational biases.
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(such as low diffusion of long library molecules onto the 
surface of the sequencing chip) can reduce the coverage 
of longer transcripts.

Long-​read methods (using either cDNA or dRNA-​seq)  
address the basic limitation of short-​read methods for 
isoform analysis — that is, their read length. Long-​read  
methods can generate full-​length transcript reads 
spanning isoforms from the poly(A) tail to the 5ʹ cap. 
As such, these methods make it possible to analyse 
transcripts and their isoforms without reconstructing 
them, or inferring their existence, from short reads; 
each sequence read simply represents its starting RNA 
molecule. Future application of full-​length cDNA-​seq or 
dRNA-​seq to DGE analysis will depend on higher yields 
from the PacBio and ONT technologies. Long-​read 
RNA-​seq analysis is being adopted rapidly by users and 
combined with deep short-​read RNA-​seq data for more 
comprehensive analysis — very similar to the hybrid 
approach taken for genome assembly57. In time, the long-​
read and dRNA-​seq methods are likely to demonstrate 
that the list of identified genes and transcripts, even in 
well-​characterized organisms, is far from comprehen-
sive58. As the methods mature, and as sequencing yields 
increase, differential isoform analysis will become rou-
tine. It remains to be seen what impact synthetic long-​
read RNA-​seq or other developments will have on the 
field. However, for now, Illumina short-​read RNA-​seq 
continues to dominate, and the rest of this Review will 
focus on short-​read sequencing.

Improved RNA-​seq library preparation
RNA-​seq was initially developed to analyse polyadeny
lated transcripts, using methods derived from earlier  
expressed-​sequence tag and microarray studies.  
However, the use of next-​generation sequencing 
revealed limitations in these methods that were not 
clearly evident in microarray data. As such, a number 
of major advances in library preparation methods were 
reported with, or soon after, the initial publication of 
RNA-​seq. For instance, fragmentation of RNA before 
cDNA synthesis was shown to reduce 3ʹ:5ʹ bias4, and 
strand-​specific library preparation methods, which 
allow sense and antisense transcripts to be differenti-
ated, were shown to provide a more accurate estimate 
of transcript abundance2,59 (reviewed and compared by 
Levin et al.60). RNA fragmentation and strand-​specific 
library preparation quickly became standard in most 
RNA-​seq kits. Here we briefly describe some of the 
other protocol modifications that RNA-​seq users should  
be aware of when choosing the method most suited to 
their biological questions and the samples available. 
These include alternative methods to oligo-​dT enrich-
ment when selecting RNAs for sequencing, methods 
to specifically select for the 3ʹ or 5ʹ ends of transcripts, 
the use of UMIs to differentiate technical from biolog-
ical duplication and improved library preparation for 
degraded input RNA. Combinations of these meth-
ods (and/or the use of dRNA-​seq and/or the methods 
described in Beyond steady-​state RNA analysis) allow 
users to unravel the transcriptome complexity produced 
by alternative poly(A) (APA), alternative promoter usage 
and alternative splicing.

Moving beyond poly(A) enrichment. The majority of 
published RNA-​seq data have been generated from 
oligo-​dT-enriched mRNA, which selects for trans
cripts containing a poly(A) tail and focuses sequencing 
on the protein-​coding regions of the transcriptome. 
However, in addition to this method being 3ʹ biased, 
many non-​coding RNAs, such as microRNAs (miRNAs)  
and enhancer RNAs, are not polyadenylated and there-
fore cannot be studied using this approach. Removing 
selection entirely is not an option, as such a proce-
dure results in up to 95% of reads coming from ribo-
somal RNAs (rRNAs)61. As such, users have a choice 
of using oligo-​dT for mRNA-​seq or rRNA depletion 
for WTA. Short non-​coding RNAs that are not cap-
tured by oligo-​dT methods and are poorly represented 
by WTA approaches require specific small-​RNA 
methods, which primarily use sequential RNA ligation62  
(reviewed elsewhere17).

WTA generates RNA-​seq data from coding and some 
non-​coding RNAs. It is also compatible with degraded 
samples in which fragmentation of the RNA leads 
to separation of the poly(A) tail from the rest of the 
transcript. Ribosomal RNA removal is achieved either by  
separating rRNAs from other RNA species (so-​called 
pull-​out) or by selective degradation of rRNA by RNase H.  
Both approaches use sequence- and species-​specific 
oligonucleotide probes that are complementary to both 
cytoplasmic rRNAs (5S rRNA, 5.8S rRNA, 18S rRNA and  
28S rRNA) and mitochondrial rRNAs (12S rRNA  
and 16S rRNA). Oligos, often pre-​mixed in order to sim-
plify the processing of human, rat, mouse or bacterial 
(16S and 23S rRNA) samples, are added to RNA and 
hybridize with rRNA for subsequent depletion. Other 
high-​abundance transcripts, such as globin or mitochon-
drial RNA, can similarly be depleted. Pull-​out methods 
incorporate biotinylated probes and streptavidin-​coated 
magnetic beads, which are used to remove the oligo-​
rRNA complexes from solution, leaving other RNAs for 
library preparation63 (for example, Ribo-​Zero (Illumina, 
USA) and RiboMinus (Thermo Fisher, USA)). RNase H 
methods degrade the resulting oligo-​DNA:RNA hybrid 
using RNase H61 (for example, NEBnext RNA depletion 
(NEB, USA) and RiboErase (Kapa Biosystems, USA)).  
A recent comparison of these methods shows that, in 
high-​quality RNA, both can reduce rRNA to under 20% 
of the subsequent RNA-​seq reads64. However, the authors 
also report that RNase H methods were much less varia-
ble than pull-​out approaches and that some length bias 
was evident when comparing DGE across the different 
kits. The comparison also describes one other method, 
similar to RNase H, that performed well but has not pre-
viously been reported. The ZapR method (Takara Bio 
Inc., Japan) is a proprietary technology that enzymati-
cally degrades RNA-​seq library fragments derived from 
rRNAs. One limitation of rRNA depletion approaches is 
that they generally require a higher read depth per sam-
ple than oligo-​dT RNA-​seq65,66 does, primarily because 
of carry-​over of rRNAs.

Both the oligo-​dT and rRNA depletion methods can 
be used for DGE experiments, and users will probably 
default to the method that has previously been used in 
their laboratory or that is most easily available to them. 
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However, some consideration should be given to which 
method to use, particularly for degraded samples, as 
WTA approaches will detect more transcripts, but at 
higher experimental cost, than oligo-​dT methods.

Enriching RNA 3ʹ ends for Tag RNA-​seq and alterna-
tive polyadenylation analysis. The standard short-​read 
Illumina method requires 10–30 million reads per sam-
ple for high-​quality DGE analysis. For users focused on 
gene-​level expression and working on large or highly 
replicated experiments, or who are resource constrained, 
3ʹ-tag counting should be considered as an option.  
As sequencing is focused on the 3ʹ ends of transcripts, 
fewer reads are required, which reduces costs and allows 
higher numbers of samples to be run. Enriching 3ʹ  
ends also enables determination of the poly(A) sites on 
individual transcripts, which can vary because of APA  
of pre-​mRNAs67.

The 3ʹ mRNA-​seq methods68–70 generate a single 
fragment per transcript (a tag read), usually from the  
3ʹ end, and tag abundance is assumed to be proportional 
to RNA concentration. Tag-​sequencing protocols, such 
as QuantSeq (Lexogen, Austria)70, are generally shorter 
than standard RNA-​seq protocols. They have been opti-
mized in order to remove the need for poly(A) enrich-
ment and/or rRNA depletion by the use of random 
or anchored oligo-​dT-primed cDNA synthesis and to 
replace adaptor-​ligation steps with PCR immediately 
after cDNA synthesis. This approach can achieve sen-
sitivity levels similar to that of standard RNA-​seq, but 
at much lower read depths, which allows many more 
libraries to be multiplexed for sequencing. Data analy
sis is also simplified, because exon junction detection 
and the normalization of reads to gene length are not 
required71. However, 3ʹ mRNA-​seq methods can be 
affected by internal priming on homopolymeric regions 
of transcripts, which leads to erroneous tags; they also 
offer very limited isoform analysis, which can offset any 
cost benefits from their lower read-​depth requirements, 
especially for single-​use samples.

APA of mRNAs generates isoforms with substan-
tially different 3ʹ untranslated region (UTR) lengths.  
Not only does this generate multiple isoforms of a speci
fic gene but it affects regulation of that transcript, owing 
to the cis-​regulatory elements located in the 3ʹ UTR. 
Methods that allow users to investigate APA enable a 
more detailed understanding of miRNA regulation, 
mRNA stability and localization, and the translation72 
of mRNAs. APA methods aim to enrich the 3ʹ ends of 
transcripts in order to boost signal and sensitivity, and 
the tag-​sequencing methods described above are well-​
suited to this end. Other methods include polyadeny-
lation site sequencing (PAS-​seq)73, which fragments 
mRNA to around 150 bp and then uses oligo-​dT-primed 
template switching to generate cDNAs for sequencing, 
with 80% of reads coming from 3ʹ UTRs. TAIL-​seq74 
avoids the use of oligo-​dT altogether, by first depleting 
rRNA and ligating 3ʹ-RNA adaptors to the end of the 
poly(A) tail before fragmenting the RNA. After frag-
mentation, the RNA-​seq library is completed by liga-
tion of the 5ʹ-RNA adaptor. APA can also be assessed 
by RNA–protein analysis methods, such as cross-​linking 

immunoprecipitation (CLIP)75 (see Beyond analysis of 
gene expression) and dRNA-​seq.

Enriching RNA 5ʹ ends for transcription start-​site 
mapping. Analysis of DGE can be complemented by 
the use of methods that enrich for 7-methylguanosine 
5ʹ-capped RNAs, to identify promoters and transcrip-
tion start sites (TSSs). Several methods exist for this 
task, but only a few are in routine use. In cap analysis 
of gene expression (CAGE)76 and RNA annotation and 
mapping of promoters for analysis of gene expression 
(RAMPAGE)77, the 5ʹ cap of mRNAs is biotinylated 
after random-​primed first-​strand cDNA synthesis, 
which allows 5ʹ cDNA fragments to be enriched by 
streptavidin pull-​down. The CAGE protocol produces 
short cDNA tags by using type II restriction enzymes 
that cut 21–27 bp downstream from 5ʹ-ligated adaptors. 
By contrast, the RAMPAGE protocol makes use of tem-
plate switching to produce slightly longer cDNAs, which 
are then enriched for sequencing. Single-​cell-tagged 
reverse transcription sequencing (STRT-​seq)78 was devel-
oped to allow TSS mapping in single cells. The method 
uses biotinylated template-​switching oligos to produce 
cDNAs, which are captured on beads and fragmented 
near the 5ʹ end to produce short cDNA tags. The 5ʹ-end-​
capping technology that underpins CAGE was developed 
at the Riken Institute as a means to maximize the number 
of full-​length cDNA clones in early functional genomics 
experiments. The Riken-​led Functional Annotation of 
the Mouse (FANTOM) consortium demonstrated the 
power of CAGE by characterizing TSSs in over 1,300 
human and mouse primary cells, tissues and cell lines79. 
CAGE also performed best in a recent method compari-
son80. However, the authors reported that 5ʹ-end sequenc-
ing alone generates high numbers of false-​positive TSS 
peaks, and they recommended confirmation of true posi-
tives with orthogonal methods, such as DNase I mapping 
or H3K4me3 chromatin immunoprecipitation followed 
by sequencing (ChIP–seq).

Use of unique molecular identifiers to detect PCR 
duplicates. RNA-​seq data sets generally have high 
duplication rates, with many sequence reads mapping  
to the same location in the transcriptome. As opposed to  
whole-​genome sequencing, where duplicate reads are 
assumed to be due to technical biases in the PCR step 
and are removed, in RNA-​seq they are considered to be 
indicative of a true biological signal and are retained. 
Highly expressed transcripts may be represented by 
millions of starting RNA molecules in a sample, and, 
when sequenced as cDNA, many fragments will be 
identical. As such, the computational removal of 
duplicates identified during alignment is not neces-
sarily recommended81, as many of those duplicates are 
true biological signals. This is more likely when using 
single-​end sequencing, as only one end of a pair of frag-
ments need be the same for the pair to be identified as 
a duplicate; with paired-​end sequencing, both ends must 
have been fragmented at the same position, which is 
less likely81. However, when preparing a cDNA library 
there will be some degree of technical duplication due 
to PCR biases, and it can be difficult to know the degree 

Tag read
A read that is unique to a 
transcript, usually from the  
3΄ end of mRNA, for differential 
gene expression analysis, or 
the 5΄ end, for analysis of 
transcription start sites  
and promoters.

Duplication rates
The frequencies at which 
sequencing reads for an RNA 
sequencing (RNA-​seq) sample 
map to the same location in 
the transcriptome. In RNA-​seq 
libraries, duplication rates can 
seem high for some transcripts 
because they are present at 
wildly different levels in the 
sample. Highly expressed 
genes will have high duplication 
rates, while low expressors  
may have minimal duplication. 
RNA-​seq presents a particular 
challenge, as much of the 
duplication may be genuine 
signal from highly expressed 
transcripts, while some may  
be attributable to amplification 
and sequencing biases.

Single-​end sequencing
Short-​read sequencing 
performed from one end of  
the cDNA fragment, commonly 
used for differential gene 
expression experiments,  
due to its low cost.

Paired-​end sequencing
Short-​read sequencing 
performed from both ends  
of the cDNA fragment, often 
used for differential gene 
expression experiments,  
where maximum sensitivity to 
splicing is required because 
more bases of the individual 
cDNAs will be sequenced.
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of technical versus biological duplication and to control 
for this in cases where PCR duplication bias represents 
a quality control issue that can compromise the results 
of an RNA-​seq experiment.

UMIs31–34 have been proposed as a way to account 
for amplification biases. The addition of random UMIs 
to cDNA molecules before amplification enables PCR 
duplicates to be identified and computationally removed 
from analysis, while retaining the true biological dupli-
cates, thereby improving the quantification of gene 
expression and the estimation of allele frequency81,82. 
For a pair of sequence reads to be identified as a tech-
nical duplicate, they need to include the identical UMI 
and to map to the same place in the transcriptome (one 
or both ends, depending on the use of single-​end or 
paired-​end sequencing).

UMIs have been shown to improve the statistical 
analysis of RNA-​seq data for DGE by reducing vari-
ance and false-​discovery rates81,83 and to be vital in the 
analysis of single-​cell data, where amplification biases 
can be more problematic84. UMIs can also be useful 
when attempting to perform variant calling in RNA-​seq  
data sets. Although highly expressed transcripts can 
yield high coverage rates suitable for such variant call-
ing, especially if duplicate reads are included, UMIs can 
be used to remove amplification artefacts that can lead 
to erroneous calculations of allele frequency. UMIs are 
becoming standard in single-​cell RNA-​seq (scRNA-​seq) 
library preparation kits and are also being used more 
frequently for bulk RNA-​seq.

Improving the analysis of degraded RNA. Developments 
in RNA-​seq library preparation methods have also 
improved the analysis of low-​quality or degraded RNA, 
such as that obtained from clinically relevant archival 
material stored as formalin-​fixed paraffin-​embedded 
(FFPE) blocks. Low-​quality RNA results in uneven gene 
coverage, higher DGE false-​positive rates and higher 
duplication rates85, and it negatively correlates with lib
rary complexity86 in RNA-​seq experiments. However, 
library preparation methods have been adapted to reduce 
the effect of RNA degradation. These methods are likely 
to be particularly important in the development of RNA-​
seq-based diagnostics, such as future assays similar to 
OncotypeDX (not currently a sequencing assay), which 
predicts breast cancer recurrence based on a 21-gene 
RNA signature. Although several methods are available, 
two (RNase H61 and RNA exome87) have performed well 
in comparison studies88,89. As described above, the RNase 
H method uses a nuclease to digest rRNA in RNA:DNA 
hybrids but preserves degraded mRNA for RNA-​seq 
analysis. The RNA exome method uses oligonucleotide 
probes to capture RNA-​seq library molecules in a man-
ner very similar to exome sequencing90. Both methods 
are simple to implement and generate high-​quality and 
highly concordant gene expression data by reducing the 
impact of contaminating rRNA without losing degraded 
and fragmented mRNAs. The 3ʹ-end tag-​sequencing 
(see above)91 and amplicon-​sequencing (in which PCR 
amplifies over 20,000 exonic amplicons) methods92 can 
also be used for analysis of degraded RNA but are not 
currently used as widely as the RNase H method.

Designing better RNA-​seq experiments
Careful design of bulk DGE RNA-​seq experiments is 
essential to obtaining high-​quality and biologically mean-
ingful data. Particular consideration needs to be given to 
the level of replication, the sequencing read depth and the 
use of single- or paired-​end sequencing reads.

Replication and experimental power. It is essential that 
enough biological replicates be included in an experi-
ment to capture the biological variability between sam-
ples; confidence in a quantitative analysis depends on 
this aspect more than on read depth or read length93. 
Although RNA-​seq affords lower technical variabil-
ity than microarray platforms, the stochastic variance 
inherent to biological systems requires any bulk RNA 
experiment to be carried out in replicate94. The use of 
additional replicates allows outlier samples to be identi-
fied and, if necessary, removed or down-​weighted before 
performing biological analysis95. Determining the opti-
mal number of replicates requires careful consideration 
of several factors, including effect size, within-​group 
variation, acceptable false-​positive and false-​negative 
rates and maximum sample size96,97, and can be aided by 
the use of RNA-​seq experimental design tools96 or power 
calculation tools98,99.

Determining the correct number of replicates appro-
priate to a given experiment is not always straight
forward. A 48-replicate yeast study showed that many 
of the tools available for DGE analysis detected only 
20–40% of differentially expressed genes when only  
3 replicates were included in the analysis100. The study sug-
gested that a minimum of six biological replicates should 
be used, which is substantially more than the three or four 
replicates generally reported in the RNA-​seq literature. 
A more recent study suggests that four replicates may be 
adequate, but it emphasizes the necessity of measuring 
biological variance — for example, in a pilot study — 
before settling on an appropriate number of replicates93. 
For highly diverse samples, such as clinical tissue from 
cancer patient tumours, many more replicates are likely to 
be required in order to pinpoint changes with confidence.

Determining the optimal read depth. Once RNA-​seq 
libraries have been prepared, a decision needs to be 
made regarding how deeply to sequence them. Read 
depth refers to the target number of sequence reads 
obtained for each sample. For bulk RNA DGE experi-
ments in eukaryotic genomes, it is generally accepted 
that read depths of around 10–30 million reads per 
sample are required93,101–103. However, it has been shown 
across multiple species that depths of as few as 1 million 
reads per sample provide transcript abundance esti-
mates similar to those from 30 million reads for the most 
highly expressed half of the transcriptome104. If only rela-
tively large changes in the expression of the most highly 
expressed genes are important, and if there are adequate 
biological replicates, less sequencing may be sufficient 
to address the hypothesis driving the experiment. After 
sequencing has been completed, the estimate of read 
depth can be validated by checking the distribution of 
reads among the samples and checking saturation curves 
to assess whether further sequencing is likely to increase 

Biological replicates
Parallel measurements of 
biologically distinct samples, 
such as tissue from three 
subjects, that capture natural 
biological variation, which may 
itself be either a subject of 
study or a source of noise.  
By contrast, technical replicates 
are repeated measurements  
of the same sample — for 
example, the same tissue 
processed three times.
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the sensitivity of the experiment103,105. As sequencing 
yields have increased, it has become standard practice 
to multiplex all the samples comprising an experiment 
into a single ‘pooled’ sequencing library, in order to 
control for technical effects. The total number of reads 
required is determined by multiplying the number of 
samples by the desired read depth; the pooled library 
is then run as many times as is required to generate the 
desired total number of reads. This pooling requires that 
the concentration of each RNA-​seq library be carefully 
measured and assumes that the amount of cDNA in the 
multiplexed samples is relatively even (low variance), 
so that the total number of reads is evenly distributed 
among the individual samples. Running a single lane to 
verify low variance between the samples is often worth-
while before committing to an expensive, multi-​lane 
sequencing run.

Choosing parameters: read length and single-​end or 
paired-​end sequencing. The final sequencing parameters 
to be determined include the read length and whether to 
generate single-​end or paired-​end reads.

In many sequencing applications, the length of the 
sequencing reads has a great impact on the usefulness 
of the data, as longer reads give more coverage of the 
sequenced DNA. This is less applicable when using 
RNA-​seq to examine DGE, where the important factor is 
the ability to determine where in the transcriptome each 
read came from (see Phase 1 — alignment and assem-
bly of sequencing reads). Once a read’s position can be 
mapped unambiguously, longer reads do not add much 
value in a quantification-​based analysis106. For more 
qualitative RNA-​seq assays, such as the identification 
of specific isoforms, longer reads may be more helpful.

The issue of single-​end versus paired-​end reads is 
similar. In single-​end sequencing, only one end (3ʹ or 5ʹ) 
of each cDNA fragment is used to generate a sequence 
read, while paired-​end sequencing generates two reads 
for each fragment (one 3ʹ and one 5ʹ). In assays where 
coverage of as many nucleotides as possible is desired, 
long-​read paired-​end sequencing is preferred. However, 
sequencing every base of a transcript fragment is not 
required for DGE analysis, where users need only count 
the reads mapping to a transcript after alignment.  
For example, a comparison of ‘short’, 50-bp single-​end 
sequencing to ‘long’, 100-bp paired-​end sequencing 
confirms that DGE results are not affected by the use of 
single-​end sequencing106. This is because single-​ended 
reads are sufficient to identify the source gene of most 
of the sequenced fragments. The same study showed that 
using short single-​end reads compromised the ability to 
detect isoforms, as fewer reads were seen that spanned a 
splice junction. Paired-​end sequencing can additionally 
help disambiguate read mappings and is preferred for 
alternative-​exon quantification, fusion transcript detec-
tion and de novo transcript discovery, particularly when 
working with poorly annotated transcriptomes107,108.

In practice, the choice between single-​end or paired-​
end sequencing is often based on cost or on the sequenc-
ing technology available to the user. Before release of the 
Illumina NovaSeq, in most cases single-​end sequencing 
cost less per million reads than paired-​end sequencing and 

therefore allowed higher replication or read depth for the 
same experimental cost. Given a choice between obtain-
ing a greater number of shorter single-​end reads and 
generating longer and/or paired-​end reads, an increase 
in read depth will have more impact on increasing the 
sensitivity of a DGE experiment.

RNA-​seq data analysis
The number of computational approaches for analy
sing sequence reads to determine differential expression 
have multiplied considerably over the past 10 years, and, 
even for straightforward RNA-​seq DGE, there is substan-
tial divergence in analytical practice at each stage50,103. 
However, differences in the approaches used at each 
stage and differing combinations of techniques in a pipe-
line can have substantial effects on the biological con-
clusions that may be drawn from the data50,103,109,110. The 
optimal set of tools to use will depend on the specific bio-
logical question being explored, as well as the available 
computational resources50. Although multiple end points 
are possible, our emphasis is on surveying the tools and 
techniques commonly used in assessment, for every 
gene, of the likelihood that it is differentially expressed 
between sample groups. To achieve this, at least four dis-
tinct phases of analysis are required (Fig. 2; Table 2). The 
first phase takes the raw sequence reads generated by  
a sequencing platform and maps them to the transcrip-
tome. Phase 2 quantifies the number of reads associated 
with each gene or transcript (an expression matrix). This 
process may involve one or more distinct sub-​stages of 
alignment, assembly and quantification, or it may holis-
tically generate the expression matrix from read counts 
in a single step. Usually there is a third phase where the 
expression matrix is altered by filtering lowly expressed 
features, as well as the crucial step of normalizing the 
raw counts to account for technical differences between 
the samples. The final phase in DGE is statistical mod-
elling of the sample groups and covariates, to calculate 
confidence statistics related to differential expression.

Phase 1 — alignment and assembly of sequencing reads. 
After sequencing has been completed, the starting point 
for analysis is the data files, which contain base-​called 
sequencing reads, usually in the form of FASTQ files111. 
The most common first step in processing these files is 
to map sequence reads to a known transcriptome (or 
annotated genome), converting each sequence read to 
one or more genomic coordinates. This process has tra-
ditionally been accomplished using distinct alignment 
tools, such as TopHat112, STAR113 or HISAT114, which rely 
on a reference genome. Because the sequenced cDNA is 
derived from RNA, which may span exon boundaries, 
these tools perform a spliced alignment allowing for gaps 
in the reads when compared to the reference genome 
(which contains introns as well as exons).

If no high-​quality genome annotation containing 
known exon boundaries is available, or if it is desirable 
to associate reads with transcripts (rather than genes), 
aligned reads can be used in a transcriptome assem-
bly step115. Assembly tools such as StringTie116 and 
SOAPdenovo-​Trans117 use the gaps identified in the 
alignments to derive exon boundaries and possible 

Expression matrix
Matrix of values capturing the 
essential data for a differential-​
expression RNA-​seq 
experiment. Rows are RNA 
features, such as genes or 
transcripts, with one column 
per sequenced sample. Values 
are generally counts of the 
number of reads associated 
with each RNA feature; these 
may be estimated for isoform 
features and are often 
transformed via normalization 
before subsequent analysis.
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splice sites. These de novo transcript assembly tools are 
particularly useful when the reference genome anno-
tation may be missing or incomplete, or where aber-
rant transcripts (for example, in tumour tissue) are of 
interest. Transcriptome assembly methods may benefit  
from the use of paired-​end reads and/or longer reads  
that have a greater likelihood of spanning splice junc
tions. However, complete de novo assembly of a transcrip-
tome from RNA-​seq data is not generally required for  
determining DGE.

More recently, computationally efficient ‘alignment-​
free’ tools, such as Sailfish118, Kallisto119 and Salmon120 have 
been developed that associate sequencing reads directly 
with transcripts, without a separate quantification step 
(see phase 2 below). These tools have demonstrated good 
performance in characterizing more highly abundant (as 
well as longer) transcripts; however, they are less accurate 
in quantifying low-​abundance or short transcripts121.

The different tools for mapping sequence reads to 
transcripts have meaningful differences in how they allo-
cate a subset of the reads, and this can affect the resulting 
expression estimates50,121,122. These effects are particularly 

noticeable for multi-​mapped reads that could have 
come from more than one distinct gene, pseudo-​gene 
or transcript. A comparison of 12 gene expression esti-
mation methods revealed that some alignment methods 
underestimate the expression of many clinically relevant 
genes123, primarily driven by the treatment of ambigu-
ously mapping reads. Modelling how to properly allocate 
multi-​mapped reads remains an open area of research in 
the computational analysis of RNA-​seq data. It is com-
mon practice to exclude these reads from further analy-
sis, which can bias results (see Phase 2 — quantification 
of transcript abundance)122. Other approaches include 
generating ‘merged’ expression features that encompass 
overlapping areas of shared mapping124 and computing 
per-​gene estimates of mapping uncertainty to be used in 
subsequent confidence calculations125.

Phase 2 — quantification of transcript abundance. Once 
reads have been mapped to genomic or transcriptomic 
locations, the next step in the analysis process is to assign 
them to genes or transcripts, to determine abundance 
measures. Diverse comparative studies have shown that 

StringTie

• RSEM
• MMSEQ

• HTSeq
• featureCounts

Ballgown CuffDiff2

SOAPdenovo-Trans

• Kallisto
• Salmon

• TopHat
• STAR
• HISAT

• TopHat
• STAR
• HISAT

CuffLinks

A C

B

Differentially expressed genes or transcripts

FASTQ

Phase 1a:
align

Phase 1b:
assemble

Phase 2:
quantify

Phase 3:
normalize

Phase 4:
model

TMM or other 

• edgeR
• DESeq2
• limma+voom

TXI

Fig. 2 | RnA-​seq data analysis workflow for differential gene expression. Computational analysis for differential  
gene expression (DGE) begins with raw RNA sequencing (RNA-​seq) reads in FASTQ format and can follow a number of 
paths. Three popular workflows (A, B and C, represented by the solid lines) are given as examples, and some of the more 
common alternative tools (represented by the dashed lines) are indicated. In workflow A, aligners such as TopHat112, 
STAR113 or HISAT2 (ref.114) use a reference genome to map reads to genomic locations, and then quantification tools, such 
as HTSeq133 and featureCounts134, assign reads to features. After normalization (usually using methods embedded in the 
quantification or expression modelling tools, such as trimmed mean of M-​values (TMM)142), gene expression is modelled 
using tools such as edgeR143, DESeq2 (ref.155) and limma+voom156, and a list of differentially expressed genes or transcripts 
is generated for further visualization and interpretation. In workflow B, newer, alignment-​free tools, such as Kallisto119  
and Salmon120, assemble a transcriptome and quantify abundance in one step. The output from these tools is usually 
converted to count estimates (using tximport130 (TXI)) and run through the same normalization and modelling used in 
workflow A, to output a list of differentially expressed genes or transcripts. Alternatively, workflow C begins by aligning 
the reads (typically performed with TopHat112, although STAR113 and HISAT114 can also be used), followed by the use of 
CuffLinks131 to process raw reads and the CuffDiff2 package to output transcript abundance estimates and a list  
of differentially expressed genes or transcripts. Other tools in common use include StringTie116, which assembles a 
transcriptome model from TopHat112 (or similar tools) before the results are passed through to RSEM105 or MMSEQ132  
to estimate transcript abundance, and then to Ballgown157 to identify differentially expressed genes or transcripts, and 
SOAPdenovo-​trans117, which simultaneously aligns and assembles reads for analysis via the path of choice.
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the approach taken at the quantification step has per-
haps the largest impact on the ultimate results110,123, even 
greater than the choice of aligner122,126–128. The quantifi-
cation of read abundances for individual genes (that is, 
all transcript isoforms for that gene) relies on counting 
sequence reads that overlap known genes, using a tran-
scriptome annotation. However, allocating reads to spe-
cific isoforms using short reads requires an estimation 
step, as many reads will not span splice junctions and 
therefore cannot be unambiguously assigned to a specific 
isoform129. Even in the case in which only gene-​level dif-
ferential expression is being studied, quantifying differ-
ences in isoforms may result in more accurate results in 
the case of a gene shifting its primary expression between 
isoforms of different lengths130. For example, if the pri-
mary isoform in one sample group has half the length of 
that in another sample group but is expressed at double 
the rate, a purely gene-​based quantification will be unable 
to detect the differential expression of this feature.

Quantification tools in common use include RSEM105, 
CuffLinks131, MMSeq132 and HTSeq133, as well as the 
alignment-​free direct quantification tools mentioned 
above. A read-​count-based tool such as HTSeq (or the  
R equivalent, featureCounts134) will generally discard many 
aligned reads, including those that are multi-​mapped  
or that overlap multiple expression features. As a result, 
homologous and overlapping transcripts may be elimi-
nated from subsequent analysis. RSEM105 allocates ambig-
uous reads using expectation maximization, whereas 

reference-​free alignment methods such as Kallisto119 
include these reads in their transcript count estimates, 
which can bias results121. Transcript abundance esti-
mates can be converted to read count equivalents, which 
some of the tools below require, using a package such as 
tximport130. The results of the quantification step are usu-
ally combined into an expression matrix, with a row for 
each expression feature (gene or transcript) and a column 
for each sample, with the values being either actual read 
counts or estimated abundances.

Phase 3 — filtering and normalization. Generally, quan-
tified gene or transcript counts are also filtered and 
normalized, to account for differences in read depth, 
expression patterns and technical biases135–137. Filtering 
to remove features with uniformly low read abundance 
is straightforward and has been shown to improve the 
detection of true differential expression138. Methods for 
normalizing an expression matrix can be more complex. 
Straightforward transformations can adjust abundance 
quantities in order to account for differences in GC 
content135 and read depth136. Early methods for accom-
plishing this, such as RPKM4, are now recognized to be 
insufficient136 and have been replaced by methods that 
correct for more subtle differences between samples, such 
as quartile or median normalization139,140.

Comparative studies have shown empirically that the 
choice of normalization method can have a major impact 
on the ultimate results and biological conclusions50,127,141. 

Table 2 | common software tools in use for differential gene expression analysis using RnA-​seq data

tool name Alignment and/or assembly Quantification normalization Differential expression Ref.

TopHat Reference genome + annotation NA NA NA 112

STAR NA NA NA 113

HISAT NA NA NA 114

SOAPdenovo-​Trans De novo assembly NA NA NA 117

StringTie De novo assembly Transcript estimates NA NA 116

Kallisto Alignment-​free assembly Transcript estimates NA NA 119

Salmon  Transcript estimates NA NA 120

Cufflinks Transcript assembly Transcript estimates NA NA 131

RSEM NA Transcript estimates NA NA 105

MMSeq NA Transcript estimates NA NA 132

HTSeq NA Read counts from  
non-​overlapping 
annotated features

NA NA 133

featureCounts NA Read counts from  
non-​overlapping 
annotated features

NA NA 134

tximport NA Transcript estimates 
converted to read counts

NA NA 130

edgeR NA NA TMM Negative binomial distribution + GLM 143

limma+voom NA NA TMM Mean–variance transform + GLM 156

DESeq2 NA NA Various Negative binomial distribution + GLM 155

Ballgown NA NA NA Input from StringTie, RSEM or 
alignment-​free quantification, + GLM

157

CuffDiff NA NA NA DE from Cufflinks estimates 131

Some tools are used for multiple phases, such as combining transcript assembly and quantification, or normalization and differential expression modelling.  
See also Fig. 2. DE, differential expression; GLM, generalized linear modelling; NA, not applicable; RNA-​seq, RNA sequencing; TMM, trimmed mean of M-​values.
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Most computational normalization methods rely on 
two key assumptions: first, that the expression levels of 
most genes remain the same across replicate groups137; 
and second, that different sample groups do not exhibit 
a meaningful difference in overall mRNA levels. It is 
particularly important to carefully consider whether 
and how to perform normalization when these basic 
assumptions may not hold true. For example, if a cer-
tain group of genes is highly expressed in one sample 
group, while the same genes plus an additional group 
of genes are expressed in another sample group, then 
simply normalizing for read depth is inadequate, as 
the same number of sequence reads will be distributed 
over a greater number of expressed genes in the second 
sample group. Normalization procedures such as the 
trimmed mean of M-​values (TMM) method142 (incor-
porated into the edgeR143 DGE analysis package) can 
compensate for these cases. Determining the appropri-
ateness of a chosen normalization can be difficult; one 
option is to attempt an analysis using multiple methods, 
then to compare the consistency of the outcomes. If the 
results are highly sensitive to the normalization method, 
further exploration of the data should be conducted, to 
determine the origin of the discrepancies. Care must be 
taken to ensure that such a comparison not be used to 
select the normalization method that yields results that 
are the most compatible with the original hypothesis.

One approach to dealing with such issues is the use 
of spike-​in control RNAs144,145 — that is, introducing a pri-
ori alien RNA sequences at pre-​defined concentrations, 
usually during library preparation. Spike-​ins for RNA-​
seq include the External RNA Controls Consortium 
mix (ERCCs)146, spike-​in RNA variants (SIRVs)147 and 
sequencing spike-​ins (Sequins)148. As the RNA con-
centration of spike-​in is known in advance, and as the 
concentration is directly related to the number of reads 
generated, it is possible to calibrate the expression levels 
of the transcripts from the sample. It has been argued 
that experiments with large fold-​changes in overall 
expression cannot be properly analysed without spike-​
in controls24,144,149. However, in practice it can be difficult 
to consistently incorporate control spike-​ins at preset 
levels137,150,151, and they are more reliable at normaliz-
ing read counts at the gene level than at the transcript 
level152, because individual isoforms can be expressed 
at markedly different concentrations within a sample. 
Currently, spike-​in controls are not in wide use in pub-
lished RNA-​seq DGE experiments, although this is likely 
to change as more users encounter them in single-​cell 
experiments (where they are used more widely153), and 
if the techniques can be refined to be more consistent.

Phase 4 — differential expression modelling. Once 
sequence reads have been processed into an expression 
matrix, the experiment can be modelled to determine 
which transcript features are likely to have changed their 
level of expression. Several tools are commonly used to 
accomplish this; some model read counts of gene-​level 
expression, whereas others rely on transcript-​level esti-
mates. Gene-​level tools typically rely on aligned read 
counts and use generalized linear models that enable  
complex experimental set-​ups to be evaluated154. 

These include tools such as edgeR143, DESeq2 (ref.155) and  
limma+voom156, which are computationally efficient  
and provide comparable results50,103. Tools that model 
differential isoform expression, such as CuffDiff131, 
MMSEQ132 and Ballgown157, tend to require more com-
putational power and to vary more in their results50,110,158. 
However, the choices made before implementing these dif-
ferential expression tools — that is, regarding alignment, 
quantification, or filtering and normalization — have a 
greater impact on the overall variance of the final results.

Beyond bulk RNA analysis
RNA-​seq from bulk tissue and/or cells has revolution-
ized our understanding of biology, but it cannot easily 
resolve specific cell types and it fails to preserve spatial 
information, both of which are critical to understanding 
the complexity of biological systems. The methods that 
enable users to move beyond bulk RNA are very similar 
to standard RNA-​seq protocols, but they enable very dif-
ferent questions to be asked. Single-​cell sequencing has 
revealed cell types that were unknown in what were con-
sidered well-​studied diseases, such as the discovery of 
ionocyte cells, which could be relevant to the pathology 
of cystic fibrosis159. Spatially resolved RNA-​seq prom-
ises similar revelations in our understanding of cell-​
to-cell interactions in solid tissues, such as revealing the 
extent of fetal marker gene expression in minor popu
lations of adult heart tissue160. Bulk RNA-​seq will remain 
a dominant and valuable tool for the foreseeable future.  
But single-​cell laboratory and analysis methods are 
rapidly being adopted by researchers, and, as spatial  
RNA-​seq methods mature, they are also likely to become 
part of the routine RNA-​seq toolkit. Both types of 
method will improve our ability to interrogate the com-
plexity of multicellular organisms, and both are likely to 
be used in combination with bulk RNA-​seq methods. 
Here we briefly describe the major single-​cell and spa-
tially resolved transcriptome methods, how they differ 
from bulk RNA-​seq and what new users need to consider.

Single-​cell analysis. scRNA-​seq was first reported in 
2009 (ref.161) by isolating individual oocytes in Eppendorf 
tubes containing a lysis buffer. Its application to novel 
biological questions, and the laboratory and computa-
tional methods available, continues to advance at such 
a rapid pace that even recent reviews162,163 are rapidly 
becoming outdated. Each scRNA-​seq method requires 
solid tissues to be dissociated, single cells to be separated 
(using very different approaches) and their RNA to be 
labelled and amplified for sequencing, and all methods 
use steps borrowed from earlier bulk RNA-​seq protocols.

Mechanical disaggregation and enzymatic dissoci-
ation with collagenase and DNase produces the high-
est yields of viable cells in a single-​cell suspension164,  
but yields are highly tissue-​specific and are best determined 
empirically — and very carefully165. Once a single-​cell  
suspension is prepared, individual cells can be separated 
by various methods (Fig. 3a); as most laboratories have 
access to flow-​cytometry instrumentation, the most 
easily accessible method is to flow-​sort cells directly into 
microtitre plates containing lysis buffer39,166. For higher-​
throughput experiments, a wide number of techniques 

Spike-​in control
A pool of exogenous nucleic 
acids added at known 
concentration to a sample 
before processing. They are 
usually synthetic RNAs  
pre-​pooled at varying 
concentrations and used to 
monitor reaction efficiency  
and to identify methodological 
bias and false-​negative results.
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Fig. 3 | the key concepts of single-​cell and spatial RnA-​seq. a | An 
overview of the single-​cell RNA sequencing (RNA-​seq) workflow. Single-​cell 
sequencing begins with the isolation of single cells from a sample, such as 
dissociated skin tissue, by any one of a number of methods, including 
micropipetting into individual microfuge tubes161 or flow sorting into 96 or 
384 well plates39,166 containing a lysis buffer, capture in a microfluidic chip167, 
distribution in nanowells168, microfluidic isolation in reagent-​filled 
droplets169,170 or marking cells with in situ barcodes171,172. Cells are reverse 
transcribed in order to produce cDNA (usually tagged with unique molecular 
identifiers (UMIs)) for RNA-​seq library preparation and sequencing. Quality 
control (QC), differential gene expression (DGE) and 2D visualization  
(t-​distributed stochastic neighbour embedding (tSNE)), along with 
unsupervised clustering and network analysis, of the single-​cell RNA-​seq 

data are used to determine discrete cell populations. The number of cells 
usually profiled is indicated alongside each technology, as is the RNA-​seq 
strategy — for example, 3΄ or 5΄ mRNA or full-​length cDNA. b | An overview 
of the spatialomics workflow. Spatial encoding requires a frozen tissue 
section to be applied to oligo-​arrayed microarray slides184 or to ‘pucks’ of 
densely packed oligo-​coated beads185. The mRNA diffuses to the slide 
surface and hybridizes to oligo-​dT cDNA synthesis primers that encode UMIs 
and spatial barcodes. It is then reverse transcribed to produce cDNA, which 
is pooled for library preparation and sequencing. Computational analysis of 
the spatialomics data maps sequence reads back to their spatial coordinates 
after DGE analysis and allows differential spatial expression to be visualized. 
Single-​cell and spatialomics RNA-​seq data are usually generated on  
short-​read sequencers. Part a is adapted from ref.163, Springer Nature Limited.
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for isolating cells exist that require specific single-​cell 
instrumentation to be built or purchased. Individual 
cells can be physically captured in microfluidic chips167 
or loaded into nanowell168 devices by Poisson distribu-
tion, they can be isolated and merged into reagent-​filled 
droplets by droplet-​microfluidic isolation (such as in 
Drop-​Seq169 and InDrop170), or they can be labelled with 
in situ sequence barcodes (such as in single-​cell com-
binatorial indexing RNA sequencing (sci-​RNA-seq)171 
and split-​pool ligation-​based transcriptome sequencing 
(SPLiT-​seq)172). After single cells are isolated, they are 
lysed in order to release RNA into solution for cDNA 
synthesis, and the cDNA is used as the input for RNA-​seq  
library preparation. The RNA from individual cells is 
generally amplified by PCR during library preparation. 
This amplification introduces PCR bias, which can be 
corrected by the use of UMIs33,173,174. Although only 
10–20% of transcripts will be reverse transcribed, due 
to Poisson sampling33, which limits transcript detec-
tion sensitivity, the various methods all generate usable 
data. Outside the wet lab, computational methods are 
also rapidly developing, and guidelines on scRNA-​seq 
experimental design162,175 have recently emerged. This 
rapid development in methodology means that techni-
cal comparisons of scRNA-​seq methods are quickly out-
dated. Nevertheless, Ziegenhain et al.84 provide a detailed 
overview of scRNA-​seq methods, highlight the impor-
tance of UMIs in data analysis and report on which of 
the six methods profiled was most sensitive. However, 
their study does not include the widely adopted 10X 
Genomics (10XGenomics, USA) technology.

The major factors users will consider when choos-
ing an scRNA-​seq method include whether they require 
reads along the full length of transcripts, trade-​offs 
between profiling more cells (breadth) or more tran-
scripts per cell (depth) and the overall experimental 
costs. Full-​length scRNA-​seq systems39,168,173,176 usually 
have lower throughput, since each cell needs to be 
processed independently up to the final scRNA-​seq 
library. However, such systems allow users to interro-
gate alternative-​splicing and allele-​specific expression. 
Non-​full-length systems generate sequences from the 
3ʹ or 5ʹ ends of transcripts, which limits their ability to 
infer isoform expression, but as cells can be pooled after 
cDNA synthesis, the number of cells that can be pro-
cessed is 2–3 orders of magnitude higher. The breadth 
of single-​cell sequencing relates to the number of cells, 
tissues or samples that can be profiled, whereas depth 
relates to how much of the transcriptome is profiled 
for a given number of sequencing reads. Although the 
number of cells sequenced in an experiment is driven 
by the choice of method, it does allow some flexibility, 
but as the number of cells profiled rises, the increased 
sequencing cost usually restricts the depth of transcrip-
tome profiling. Thus, different scRNA-​seq systems can 
be viewed in terms of the two dimensions of breadth 
and depth. Typically, plate-​based or microfluidic meth-
ods often capture the fewest cells but detect more genes 
per cell168,173,176,177, whereas droplet-​based systems can be 
used to profile the greatest number of cells169,170 and have 
been used to generate individual data sets from more 
than one million cells178.

The power of scRNA-​seq is driving large-​scale cell 
atlas projects, which aspire to determine the full comple-
ment of cell types in an organism or tissue. The Human 
Cell Atlas179 and NIH Brain Initiative180 projects intend 
to sequence all cell types present in the human body 
and brain, respectively. The Human Cell Atlas aims 
to sequence 30 to 100 million cells in phase 1 and will 
increase in breadth and depth as technologies develop. 
Recent results from this project include the discovery of 
ionocyte cells159 and the finding that kidney cancer devel-
ops from different cell types in children and adults181. 
However, scRNA-​seq users should be aware that the 
technologies can be applied to almost any organism. 
Recently, the analysis of A. thaliana by root cell proto-
plasting182 demonstrated that even the tough cell wall of 
plant cells is an obstacle that can be overcome in order 
to generate single cells for sequence analysis. scRNA-​seq  
is rapidly becoming a standard part of the biologist’s 
toolkit and may be as widely used in 10 years’ time as 
bulk RNA-​seq is today.

Spatially resolved RNA-​seq methods. Current bulk and 
scRNA-​seq methods provide users with highly detailed 
data regarding tissues or cell populations but do not 
capture spatial information, which reduces the abi
lity to determine how cellular context relates to gene 
expression. Two approaches to spatialomics methods are 
‘spatial encoding’ and ‘in situ transcriptomics’. Spatial-​
encoding methods record spatial information during 
RNA-​seq library preparation, either by isolating spatially 
restricted cells (for example, by laser-​capture micro
dissection (LCM)183) or by barcoding RNAs according to 
their location before isolation (via direct mRNA capture 
from tissue sections184,185) (Fig. 3b). In situ transcriptomics 
methods generate data within tissue sections by sequenc-
ing or imaging RNA in cells. We refer interested readers 
to recent in-​depth reviews for a more comprehensive 
analysis of the field than is provided below186–188.

LCM has been successfully used to isolate and profile 
individual cells or specific regions from tissue sections 
by RNA-​seq183,189–191. Despite its requiring specialized 
equipment, LCM is widely available in many institu-
tions. However, although it can achieve high spatial 
resolution, it is laborious and therefore difficult to scale. 
In both the Spatial Transcriptomics184 (10X Genomics, 
USA) and Slide-​seq185 methods, mRNAs are directly cap-
tured for RNA-​seq from frozen tissue sections applied 
directly to oligo-​arrayed microarray slides or to ‘pucks’ 
of densely packed oligo-​coated beads. The oligos com-
prise a spatial barcode, UMI and oligo-​dT primers, 
which uniquely identify each transcript and its location. 
Sequence reads are mapped back to slide coordinates to 
generate spatial gene expression information. The Spatial 
Transcriptomics approach has been shown to work across 
tissues from a range of species, including mouse brain 
and human breast cancer tissue184, human heart tis-
sue160 and A. thaliana inflorescence tissue192. Slide-​seq 
is a recently developed technology that has been shown 
to work on frozen sections of mouse brain185. These 
direct mRNA capture methods do not require special-
ized equipment, have relatively simple analysis methods 
and are likely to be applicable at scale to many tissues. 

Spatialomics
Transcriptome analysis 
methods that preserve  
the spatial information of 
individual transcripts within  
a given sample, usually a  
tissue section.
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However, two important limitations remain to be solved. 
First, the technology can only be applied to fresh frozen 
tissue. Second, the resolution is limited by both the size  
of the array and the spacing of capture oligo spots or beads; 
the current arrays measure 6.5 × 7 mm and 3 × 3 mm, 
respectively, limiting the size of a tissue section that can be  
applied. The Spatial Transcriptomics spots are 100 µm in 
diameter and are spaced 100 µm apart, meaning they are 
not small enough or densely enough packed to achieve 
single-​cell resolution. Slide-​seq beads are much smaller, 
at just 10 µm in diameter, and are very densely packed, 
giving tenfold higher spatial resolution, and around half 
of the beads profiled appear to generate data from single 
cells. Computational methods that combine scRNA-​seq 
from disaggregated tissue and spatial-​encoding data 
improve resolution185,193, but further developments in the 
underlying technology will be required in order to make 
this a more routine RNA-​seq tool.

Alternatives to the spatially resolved RNA-​seq meth-
ods described above include in situ sequencing194 and 
imaging-​based approaches that use single-​molecule 
fluorescence in situ hybridization195,196. These meth-
ods generate narrower transcriptome profiles than do 
RNA-​seq approaches, but they directly detect RNA, 
and targeted methods allow low-​abundance transcripts 
to be profiled197. At the same time, they provide infor-
mation on the tissue architecture and microenviron-
ment and can generate subcellular data198. Substantial 
progress is being made199,200, but the major limitations 
of imaging methods are the requirements for high- or 
super-​resolution microscopy combined with automated 
fluidics, as well as the time taken for imaging, which can 
be many hours, or even days. Compared to sequencing 
costs, which have dropped faster than Moore’s law pre-
dicts, the opportunities to scale imaging systems for 
high-​throughput processing appear more limited.

All of the spatialomics methods described above are 
currently limited by an inability to generate deep tran-
scriptome data, by cellular resolution and/or by very 
high costs (in time and/or money), but the methods are 
being rapidly improved and are already being applied 
to clinical samples201. Specific computational methods 
for spatialomics analysis are beginning to emerge202,203. 
Furthermore, advances in in situ RNA sequencing and 
imaging methods have already made it possible to gene
rate transcriptome data for 103 to 105 cells, which is 
similar to the amounts of data available from droplet-​
based single-​cell methods. Future development is likely 
to make spatialomics accessible to the more general 
user. However, truly single-​cell, or subcellular, resolu-
tion is unlikely to be required by the majority of users. 
As such, the breadth of transcriptome profile and appli-
cability to a wide range of tissues or samples may drive 
the development of these technologies in specific niches. 
Spatialomics is likely to be widely adopted if its technical 
limitations can be overcome.

Beyond steady-​state RNA analysis
DGE studies use RNA-​seq to measure steady-​state 
mRNA levels, which are maintained by balancing the 
rates of mRNA transcription, processing and degrada-
tion. However, RNA-​seq can also be used to study the 

processes and dynamics involved in transcription and 
translation, and these studies are providing new insights 
into gene expression.

Measuring active transcription with nascent RNA 
approaches. Gene expression is an inherently dynamic 
process, and measurement of DGE is limited in its abi
lity to detect the subtle and rapid changes in complex 
transcriptional responses or to identify unstable non-​
coding RNAs such as enhancer RNAs. RNA-​seq can 
be used to map TSSs and quantify newly transcribed 
nascent RNA, which enables the investigation of RNA 
dynamics. However, compared to DGE analysis, the 
cataloguing of nascent RNAs is challenging, because 
of their short half-​lives and low abundance. As such, 
the importance of understanding these dynamics has 
led to multiple methods being developed to analyse 
nascent RNA; these methods have revealed the extent 
of divergent transcription at promoters204, shown that 
promoter-​proximal pausing of transcriptionally active 
RNA polymerase II (Pol II) is a key regulatory step for 
gene expression205, demonstrated that nascent RNA has a 
direct role in regulating transcription and shown that its  
sequence and structure affect transcription elongation, 
pausing and stalling, as well as the binding of chroma-
tin modifiers and enhancer RNAs206. Nascent RNA-​seq 
methods that aim to distinguish between newly tran-
scribed RNA and other RNAs can be broadly split into 
three categories: ‘run-​on’ methods, Pol II immuno
precipitation (IP)-based methods and metabolic-​labelling  
approaches (Fig. 4).

Run-​on methods rely on the incorporation of nucleo
tide analogues that enable nascent RNA to be enriched 
from the total RNA pool and that allow measurement 
of transient RNA transcription (Fig. 4a). Global run-​on 
sequencing (GRO-​seq)204,207,208 and precision nuclear 
run-​on sequencing (PRO-​seq)209 achieve this by incor-
porating 5-bromouridine 5ʹ-triphosphate (BrU) or 
biotin-​modified nucleotides, respectively, into nascent 
RNA during transcription. Nuclei are isolated and 
endogenous nucleotides are removed by washing, before 
the exogenous biotin-​tagged nucleotides are added 
and transcription is resumed. Immunoprecipitation 
or affinity purification and sequencing of the enriched 
newly transcribed RNA allows the position and activ-
ity of transcriptionally engaged RNA polymerases to be 
determined transcriptome-​wide. Owing to the number 
of nucleotides labelled during run-​on, GRO-​seq can only 
achieve 10–50 bp (ref.210) resolution, which reduces the 
precision of TSS mapping. PRO-​seq achieves base-​pair 
resolution because transcription is stopped upon biotin-​
nucleotide incorporation, allowing identification of the 
incorporation site. Run-​on methods are conceptually 
simple — only RNA molecules incorporating the modi-
fied nucleotides should be enriched for sequencing, but 
in practice the presence of background non-​nascent RNA 
increases the read depth required. Use of these meth-
ods has revealed the extent of divergent or bidirectional 
transcript initiation at promoters and has identified the 
role of enhancer RNAs in modulating gene expression211. 
By incorporating specific enrichment for 5ʹ-capped 
RNAs, GRO-​cap212, PRO-​cap209 or small 5ʹ-capped RNA 

Nascent RNA
RNA that has just been 
transcribed, as opposed to 
RNA that has been processed 
and transported to the 
cytoplasm.
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sequencing (START-​seq)213 increase sensitivity and speci
ficity for detecting transcription initiation and capture  
RNAs that would be removed by co-​transcriptional pro-
cessing, as well as reducing the background signal from 
post-​transcriptionally capped RNAs.

Pol II IP methods, such as native elongating tran-
scription sequencing (NET-​seq)214 and native elongat-
ing transcript sequencing for mammalian chromatin 
(mNET-​seq)215, pull down any Pol II-​associated RNA 
using anti-​FLAG (for FLAG-​tagged Pol II) or various 

antibodies directed against the Pol II C terminal domain 
(CTD) (Fig. 4b). RNA-​seq of the nascent RNA associ-
ated with these chromatin complexes is used to map 
TSSs, although non-​nascent Pol II-​associated RNA and  
background mRNA negatively affect read depth  
and confound the analysis. NET-​seq can lack specific-
ity, in that any RNA strongly associated with Pol II can 
contaminate the nascent-​RNA enrichment, as evidenced 
by the presence of tRNA and small nucleolar RNA in 
NET-​seq data216. The use of multiple CTD antibodies  
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Fig. 4 | the key concepts of nascent RnA and translatome analysis. Nascent RNA analysis methods enrich newly 
transcribed RNAs from the other RNA in a cell and compare this to an unenriched (mature RNA) control, by one of three 
primary methods. a | Run-​on methods label RNA by adding a time-​limited pulse of modified ribonucleotides into cell 
media; various modified nucleotides can be used, but global run-​on sequencing (GRO-​seq)203 and its corresponding 
5-bromouridine 5΄-triphosphate (BrU) nucleotide are shown. After incorporation of the label, nascent-​RNA strands are 
enriched by immunoprecipitation (IP) with antibodies specific to the modified nucleotide used and are prepared for  
RNA-​sequencing (RNA-​seq) analysis. b | RNA polymerase II (Pol II) IP methods pull down Pol II-​associated RNAs after 
chromatin digestion with micrococcal nuclease. During chromatin digestion, the nascent RNA is protected from 
nuclease activity by its Pol II footprint. The protected RNA is extracted and processed for RNA-​seq analysis. c | Metabolic 
labelling methods label RNA similarly to run-​on methods, but they use the nucleotide analogue 4-thiouridine (4 sU). 
Alkylation of 4 sU after RNA extraction prompts misincorporation of G nucleotides during reverse transcription, allowing 
4 sU incorporation sites to be directly determined by mutational analysis with base-​pair resolution. Preparation of a 
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Figure adapted from ref.214, Springer Nature Limited. Part a adapted with permission from ref.222, AAAS.
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in mNET-​seq reveals how CTD modifications affect 
transcription, detects RNA-​processing intermediates 
and enables locating specific Pol II nascent RNAs to 
TSSs. However, these abilities come at the price of more 
complex experiments, the need for larger numbers of 
cells and higher overall sequencing costs.

Metabolic pulse-​labelling with the nucleotide ana-
logue 4-​thiouridine (4 sU) allows the identification of nas-
cent RNA217 (Fig. 4c). However, in methods requiring long 
labelling times, most of the transcript will be labelled, 
which limits sensitivity. By specifically targeting the 3ʹ 
end of RNAs (that is, only the newly transcribed RNA 
closest to the RNA polymerase), both transient tran-
scriptome sequencing (TT-​seq)218 and thiol(SH)-linked 
alkylation for metabolic sequencing of RNA (SLAM-​
seq)71 reduce the signal from 5ʹ RNA. TT-​seq restricts 
the labelling time to 5 minutes, so that only the 3ʹ end 
of new transcripts is labelled, and it includes an RNA 
fragmentation step before biotin affinity purification, to 
enrich for labelled RNA. SLAM-​seq incorporates a 3ʹ 
mRNA-​seq library preparation (although it can be used 
with other library preparations, such as for miRNA219), 
directing sequencing only to labelled newly transcribed 
RNA instead of to the whole transcript. Additionally, 
in SLAM-​seq, iodoacetamide is added after RNA extra
ction, to alkylate 4 sU residues that have been incor-
porated into the growing nascent-​RNA strand. This 
modification induces reverse-​transcription-dependent 
thymine-​to-cytosine (T>C) nucleotide substitutions, 
which are detected as ‘mutations’ in a sequencing analy
sis, thereby directly identifying the 4 sU incorporation 
sites. However, a low incorporation rate means that only 
a small number of 4 sU sites are available to be con-
verted to cytosines71, which limits sensitivity. Two meth-
ods, TUC-​seq220 and TimeLapse-​seq221, also use T>C 
mutational analysis but do not enrich for 3ʹ ends. 
They have been used to interrogate the transcriptional 
responses to cellular perturbation222 and to measure  
RNA half-​lives71.

Methods for nascent-​RNA analysis have not yet 
been directly compared. Nascent-​RNA methods are all 
negatively affected by the enrichment of nonspecific 
background and/or degraded RNA, which can impact 
read-​depth requirements210. By focusing sequencing 
to the 3ʹ ends only, the effects of non-​nascent RNA are 
reduced in PRO-​seq, TT-​seq and SLAM-​seq, but there 
is little evidence to suggest whether any approach out-
performs the others. Affinity pull-​down is laborious 
and requires higher quantities of starting material than 
metabolic labelling does, but determining the timing 
of pulse labelling is complex, and short pulses generate 
very little RNA for analysis, which limits sensitivity. 
Recent developments that enable tissue-​specific RNA 
labelling223, as well as new computational methods for 
‘mutational’ analysis224, may persuade users to switch 
biochemical (biotin-​based) enrichment for bioinfor-
matic enrichment of nascent and other RNAs. Further 
development of nascent-​RNA methods and their com-
bination with other methods, such as spatialomics225 or 
RNA–RNA and RNA–protein interaction methods, will 
improve our understanding of the processes involved 
in transcription.

Measuring active translation with ribosome-​profiling 
methods. The primary emphasis of RNA-​seq is on the 
species and quantities of mRNAs that are extant in a 
sample, but the presence of mRNAs does not corre-
spond straightforwardly to protein production. Two 
methods move beyond transcription and allow us to 
understand the translatome: polysomal profiling226,227 
and ribosome footprinting by RNA-​seq (Ribo-​seq228). 
Translation of mRNAs by ribosomes is highly regu-
lated, and protein levels are predominantly defined by 
translation activity. Polysome profiling and Ribo-​seq 
allow users to interrogate how many ribosomes occupy 
a transcript and their distribution along the transcript 
(Fig. 5). This allows users to infer which transcripts are 
being actively translated at a particular time or cell state. 
Both methods make the assumption that mRNA ribo-
some density correlates to the protein synthesis level. 
Comparing samples reveals ribosomal dynamics under 
treatment, over time, in development or in a disease229 
in which translation dysregulation is implicated, such as 
fibrosis230, prion disease231 or cancer232,233.

Polysome profiling uses sucrose gradient ultra-​
centrifugation to separate mRNAs bound by multiple 
ribosomes (the polysomal fraction) from those bound 
by a single, or no, ribosome (the monosomal fraction) 
for RNA-​seq library preparation228 (Fig. 5a). The mRNAs 
detected at higher abundance in the polysomal fraction 
are presumed to be more highly translated than those 
in the monosomal fraction. The method allows the 
translational status of individual mRNAs to be inferred 
and also generates high-​resolution maps of ribosome 
occupancy and density (although it does not allow 
the locations of ribosomes to be determined). Several 
improvements have been made to the original method. 
For example, the use of nonlinear sucrose gradients 
improves the ease of polysomal mRNA collection at 
the interface of the different-​concentration sucrose 
solutions234, the application of Smart-​seq235 library 
preparation enables analysis of just 10 ng of polysomal 
mRNA234 and the use of higher-​resolution sucrose gradi
ents and deep sequencing allows transcript-​isoform- 
specific translation to be measured236,237. Nevertheless, 
polysome profiling generates a relatively low-​resolution 
translation profile and is a laborious method that 
requires specialized equipment, which places limits on 
replication studies.

Ribo-​seq is based on RNA footprinting238 and was 
initially developed in yeast228. It uses cyclohexamide  
to inhibit translation elongation and cause ribosomes to 
stall on mRNAs. Digestion of mRNA with RNase I leaves  
ribosome-​protected footprints of 20–30 nucleotides, 
which are processed to generate an RNA-​seq library 
(Fig. 5b). Ribo-​seq generates a high-​resolution trans
lation profile239, mapping both ribosome abundance and 
locations on individual transcripts. Mapping ribosome 
location, which is not possible with polysome profiling, 
means it is possible to detect translation pausing, which 
can regulate protein expression. Protocol modifications 
include buffer and enzyme optimization, which more 
clearly reveals the 3-bp periodicity of Ribo-​seq data239, 
as well as barcoding and the use of UMIs240, which 
allow individual molecular events to be determined. 

4-Thiouridine
(4 sU). A thio-​substituted 
nucleoside not naturally found 
in eukaryotic mRNAs, which is 
easily incorporated into nucleic 
acids and is used in nascent 
RNA analysis.

Translatome
The complete set of proteins 
translated from mRNA in a cell, 
tissue or organism.
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Standard RNA-​seq tools can be used for computa-
tional analysis, although specific tools have recently 
been developed for finding open reading frames241,242, 
for differential243,244 or isoform-​level translational analy
sis240 and for investigating codon bias245. The main 
limitations of Ribo-​seq are the requirement for ultra-​
centrifugation and the need to empirically determine 
the RNase I digestion conditions, due to batch-​to-batch  
variability of nucleases240.

These methods average the signal from translation 
initiation, elongation and termination, but modifica-
tions to Ribo-​seq enable translational dynamics to be 
investigated. Quantitative translation initiation sequenc-
ing (QTI-​seq246) maps transcription initiation sites by 
chemically ‘freezing’ and enriching the initiating ribo-
somes while removing elongating ribosomes from the 
associated mRNA. Translation complex profile sequenc-
ing (TCP-​seq247) also maps initiation sites by enriching 
RNA associated with the 40S ribosomal small subunit 
before the mature ribosome is assembled. However,  
as ribosome integrity is preserved in this method, the 
80S ribosomal fraction can also be analysed and com-
pared, allowing a fuller picture of translational dynamics 
to be obtained (Fig. 5b).

All translatome methods are conceptually similar;  
they make the assumption that mRNA ribosome density 

correlates to protein synthesis level. Although their 
sample preparation protocols differ, all require quite 
large numbers of input cells. Ultimately, their combi
nation with RNA-​seq to understand gene expression lev-
els, and with proteomics to determine protein levels, is 
likely to be required for a comprehensive view of mRNA 
translation. For a more detailed overview of translatome 
analysis, we direct readers to recent review articles241,248.

Beyond analysis of gene expression
RNAs play an important role in the regulation of other 
biomolecules and of biological processes, such as splic-
ing and translation, that involve the interaction of RNA 
with various proteins and/or other RNA molecules. 
RNA-​seq can be used to interrogate intramolecular and 
intermolecular RNA–RNA interactions (RRIs), which 
can reveal insights into the structurome, or interactions 
with proteins, enabling deeper insights into transcrip-
tion and translation (Fig. 6). The various methods devel-
oped for interactome analysis share a common theme: 
enrichment of RNA that is interacting relative to RNA 
that is not. Some methods make use of native biolog-
ical interactions, others generate transient or covalent 
bonds between molecules of interest; most use antibody 
pull-​down, affinity purification or probe hybridization 
to enrich RNA for sequencing. Here we briefly describe 

Structurome
The complete set of secondary 
and tertiary RNA structures in 
a cell, tissue or organism.

Interactome
The complete set of molecular 
interactions in a cell, tissue or 
organism, including RNA–RNA 
or RNA–protein interactions.
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Fig. 5 | the key concepts of translatome analysis. Translatome analysis methods generate RNA-​sequencing (RNA-​seq) 
data from ribosomally bound RNA, with an assumption that mRNA ribosome density correlates with the protein synthesis 
level. a | Polysome profiling238 separates RNA molecules by centrifugation into polysomal fractions, which are compared  
by RNA-​seq. RNAs more highly expressed in the polysomal fractions are presumed to be more actively transcribed.  
b | Ribosome footprinting (Ribo-​seq) methods use RNase to digest exposed RNA, while leaving ribosome-​protected  
RNA undigested. Sequencing of the protected RNA reveals both the density and location of ribosomes. By modifying 
the standard Ribo-​seq protocol, quantitative translation initiation sequencing (QTI-​seq)245 or translation complex  
profile sequencing (TCP-​seq)246 makes it possible to specifically enrich for initiating ribosomes, or for their subunits, 
while depleting elongating ribosomes, thereby allowing a more detailed analysis of translation dynamics. Computational 
analysis of translatome RNA-​seq data identifies the relative translation of individual mRNAs and can determine translation 
initiation, elongation and termination dynamics.
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Fig. 6 | the key concepts of RnA structure and RnA–protein 
interaction analysis. a | Structurome analysis uses nucleases or 
chemical-​marking reagents to probe structured (that is, double-​stranded 
RNA (dsRNA)) and unstructured (that is, single-​stranded RNA (ssRNA)) 
RNA in a transcriptome-​wide manner. In most experiments, both ssRNA 
and dsRNA are probed in separate reactions, and the results are 
combined in a reactivity analysis to reveal the structural features. 
Nuclease digestion methods probe RNA structure using one or more 
nucleases specific to dsRNA and/or ssRNA. For example, in parallel 
analysis of RNA structure (PARS)253, parallel samples are cleaved in vitro 
with either RNase V1 (a dsRNA-​specific nuclease) or S1 nuclease  
(an ssRNA-​specific nuclease). The RNA that remains after digestion is 
converted to cDNA and sequenced, with the read depth being 
proportional to the reactivity of the aligned regions. Overlay and 
comparison of RNA-​sequencing (RNA-​seq) data allow structures to be 
inferred. Chemical-​mapping methods, such as selective 2΄-hydroxyl 
acylation analysed by primer extension and followed by sequencing or 
mutational profiling (SHAPE–seq255 or SHAPE–MaP, respectively)258, 
modify in vitro or in vivo ribonucleotides in double-​stranded or single-​
stranded regions in a structure-​dependent manner. Marks can either 

block reverse transcription, leading to truncated cDNAs, or cause 
misincorporation mutations at the modified sites. The RNA is converted 
to cDNA and sequenced, with the read depth or mutation rate being 
proportional to the reactivity of the aligned regions, allowing structures 
to be inferred. b | RNA–RNA interaction (RRI) analysis methods, such as 
SPL ASH270, begin by crosslinking interacting RNA molecules with 
biotinylated psoralen, which are then enriched by streptavidin pull-​down 
before proximity ligation joins the free ends of the interacting RNAs. 
Further fragmentation is followed by RNA adaptor ligation and 
circularization to prepare an RNA-​seq library for analysis, which reveals 
sites of both intramolecular (that is, structural) RNA interactions and 
intermolecular RNA–RNA interactions. c | RNA–protein interaction 
methods, such as crosslinking immunoprecipitation of RNA followed by 
sequencing (CLIP–seq)75, generate covalent crosslinks between 
interacting RNA and proteins using ultraviolet (UV) radiation. After RNA 
fragmentation, antibody pull-​down of the target protein co-​purifies the 
bound RNA, which is 3΄-adaptor ligated and extracted for cDNA 
synthesis. Reverse transcription from the adaptor generates cDNAs from 
the protein-​bound RNA, which is prepared for RNA-​seq analysis.  
UMI, unique molecular identifier.
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the major RNA-​seq-based methods for investigating the 
structurome and interactome.

Probing RNA structure via intramolecular RNA interac-
tions. Ribosomal RNA and tRNAs form most of a cell’s 
RNA. Together with other structured non-​coding RNAs, 
they perform various roles in the cell, from gene regula-
tion to translation249. Two primary approaches exist that 
allow users to interrogate RNA structure: nuclease-​based 
and chemical-​probing methods. Ribonuclease digestion 
was first used to determine RNA structure (of tRNAAla)250 
in 1965. Chemical methods, such as selective 2ʹ-hydroxyl 
acylation analysed by primer extension (SHAPE) chem-
istry, were developed over the next 40 years and used to 
determine tRNAAsp structure at base-​pair resolution251. 
But only combination of the various nuclease and 
chemical methods with RNA-​seq has enabled methods 
to move from single-​RNA to transcriptome-​wide ana
lysis, which is transforming our understanding of the 
complexity and importance of the structurome. Here we 
focus on the major differences between the nuclease and 
chemical-​mapping approaches (Fig. 6a), and we direct 
readers to Strobel et al.252 for a comprehensive review 
of the field.

Nuclease methods, such as parallel analysis of RNA 
structure (PARS)253 and fragmentation sequencing 
(FRAG-​seq)254, use enzymes that digest either single-​
stranded RNA (ssRNA) or double-​stranded RNA 
(dsRNA). The RNA remaining after nuclease digestion 
is used as the input for RNA-​seq library preparation. 
The structured (double-​stranded) and unstructured 
(single-​stranded) regions are subsequently identified by 
computational analysis of the resulting RNA-​seq data. 
Nucleases are easy to use and allow interrogation of both 
ssRNA and dsRNA, but they have lower resolution than 
chemical mapping254, due to the random nature of nucle-
ase digestion. Furthermore, their large size restricts entry 
to the cell, making them unsuitable for in vivo studies.

Chemical-​mapping methods use chemical probes 
that react with RNA molecules and mark structured 
or unstructured nucleotides. These marks either block 
reverse transcription or result in cDNA misincorpora-
tion, allowing the mapping and analysis of RNA-​seq 
reads to reveal the structurome. SHAPE followed by 
sequencing (SHAPE–seq)255 marks unpaired ssRNA 
by reacting with the ribose 2ʹ-hydroxyl of the RNA 
backbone, although base-​stacking in hairpin loops can 
reduce its efficiency252. Structure–seq256 and dimethyl 
sulfate sequencing (DMS-​seq)257 mark adenine and 
cytosine residues with DMS, blocking reverse transcrip-
tion and enabling RNA structure to be inferred from 
analysis of the resulting truncated cDNAs. SHAPE and 
mutational profiling (SHAPE–MaP)258 and DMS muta-
tional profiling with sequencing (DMS–MaPseq)259 
both modify the experimental conditions to improve 
reverse-​transcriptase processivity and prevent cDNA 
truncation. Instead, the chemical marks result in 
misincorporation events, and these ‘mutations’ can 
be detected during RNA-​seq data analysis to reveal  
RNA structure. The chemical probes are small mol
ecules, enabling a more biologically meaningful struc-
turome to be determined in vivo, although the data 

can be more variable due to the dynamic intracellular 
environment. They can also be used to perform struc-
tural analysis of nascent RNAs and reveal the ordering 
of cotranscriptional RNA folding260.

Nuclease and reverse-​transcription blocking methods  
generally produce short RNA fragments and only report 
on a single digestion site or chemical mark, whereas 
misincorporation and mutation detection methods can 
report on multiple chemical marks per read. None of the 
methods is without bias; reverse-​transcription blocking 
is never 100% efficient, chemical marks that should 
induce mutations can block cDNA synthesis and both 
of these factors can impact data interpretation. Spike-​in 
controls are likely to improve the quality of structurome 
analysis261 but are not yet widely used. A comparison 
of the SHAPE methods reveals differences in efficiency 
that are apparent only in in vivo experiments262, high-
lighting the care needed in comparing such complex 
methodologies.

These methods are generating novel insights into how 
RNA structure plays a role in gene and protein regula-
tion. For example, analysis of DMS mapping data sug-
gests that RNA structure may regulate APA256 and may 
slow translation in catalytically active regions, allowing 
more time for protein folding and thereby reducing mis
folding events263. A combination of structural RNA-​seq 
methods is likely to be necessary to generate a com-
plete picture of the structurome. As the field expands, 
we are likely to discover links between RNA structure 
and development or disease states; recent results have 
suggested a potential role for aberrant RNA structures 
in repeat expansion diseases264. Ultimately, structurome 
analysis may enable small-​molecule targeting of well-​
characterized RNA structures, opening up a new area of 
therapeutic development265.

Probing intermolecular RNA–RNA interactions. 
Intermolecular RRIs play important roles in post-​
transcriptional regulation, such as miRNA targeting 
of 3ʹ UTRs. Tools for investigating intermolecular 
RRIs have been developed for both targeted266–268 and 
transcriptome-​wide269–271 analysis. These methods share 
a common workflow, in which RNA molecules are 
crosslinked so as to preserve interactions, before frag-
mentation and proximity ligation (Fig. 6b). Most, but not 
all, of the chimeric cDNAs generated by the different 
methods are derived from ligation of stably base-​paired 
(that is, interacting) RNA molecules. Targeted methods 
such as crosslinking, ligation and sequencing of hybrids 
(CLASH)266, RNA interactome analysis and sequenc-
ing (RIA–seq)267, and RNA antisense purification fol-
lowed by RNA sequencing (RAP–RNA)268 can generate 
high-​depth interaction maps of a single RNA species, 
or family of RNAs. CLASH enriches for RRIs mediated 
by specific protein complexes using IP, whereas RIA–
seq267 uses antisense oligonucleotides to pull down RNAs 
interacting with the target; neither method distinguishes 
between direct and indirect RRIs, which complicates 
biological interpretation. To increase the resolution 
of RRI analysis, RAP–RNA268 uses psoralen and other 
crosslinking agents, followed by RNA capture with anti-
sense oligonucleotides, and high-​throughput RNA-​seq 
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to detect both direct and indirect RRIs. Although the 
method does allow for a more specific analysis, it 
requires the preparation of multiple libraries (one for 
each crosslinking agent).

Transcriptome-​wide methods are fundamentally 
similar to targeted methods: interacting RNAs are 
crosslinked in vivo and enriched. Enrichment improves 
specificity by reducing the amount of non-​interacting 
RNA carried through into the ligation reaction and 
can be achieved by 2D-​gel purification (as in psoralen 
analysis of RNA interactions and structures (PARIS)269) 
or biotin affinity purification of the crosslinked RNAs 
(as in sequencing of psoralen crosslinked, ligated and 
selected hybrids (SPLASH)270), or by depletion of non-​
crosslinked RNAs by RNase R digestion (as in ligation 
of interacting RNA followed by RNA-​seq (LIGR–seq)271). 
After ligation, crosslinks are reversed before RNA-​seq 
library preparation and sequencing. PARIS generates 
the highest number of interactions of any method272, 
but it requires 75 million reads per sample, more than 
any other RRI method and more than twice the average 
read depth of DGE experiments.

Analysis of collated RNA interaction data allows 
multiple interactions to be visualized273 and has revealed 
the variation in distribution of RRIs by RNA species272. 
In all, 90% of RRIs involve mRNAs. Nearly half involve 
miRNAs or long non-​coding RNAs, for which most 
interactions are with an mRNA target. Comparison of 
these collated data reveals the biases in the different 
methods for specific RNA species, which results in very  
little overlap between methods. Hence, a complete 
picture of RRIs is likely to require the use of more than 
one method. However, there are several limitations of 
RRI methods. Perhaps the most challenging is that RRIs 
are dynamic and are affected by structural conformation 
and other intermolecular interactions269, making inter-
pretation difficult without replication274. Intramolecular 
interactions add noise to intermolecular RRI analysis, 
which requires highly structured RNAs, such as rRNAs, 
to be filtered and removed271. Other issues include the 
disruption of interactions during RNA extraction, 
requiring stable crosslinking methods, but the most 
commonly used RRI crosslinking reagents — psoralen 
and 4ʹ-amino-​methyltrioxsalen (AMT) — only crosslink 
pyrimidines with low efficiency, reducing sensitivity. 
Additionally, the proximity ligation step is inefficient 
and ligates both interacting and non-​interacting RNAs, 
further reducing sensitivity269–271.

Probing RNA–protein interactions. ChIP–seq275 
has become an indispensable tool for mapping and 
understanding DNA–protein interactions; a similar 
IP approach is used to interrogate RNA–protein inter-
actions. RNA–protein interaction methods rely on IP, 
utilizing an antibody against the RNA-​binding protein 
of interest to capture its bound RNA for analysis (first 
demonstrated with microarrays276) (Fig. 6c). The most 
obvious difference between the various RNA–protein 
interaction methods relates to whether and how the 
interacting RNA and proteins are crosslinked: some 
methods avoid crosslinking (native IP), others use for-
maldehyde for crosslinking, and some use ultraviolet 

(UV) light for crosslinking. The simplest method, RNA 
immunoprecipitation and sequencing (RIP–seq)277,  
often, but not always, uses native IP and does not 
include RNA fragmentation. This simplicity makes the 
method easy to adopt. The method generates useful 
biological insights, but it has two important drawbacks. 
First, the mild washing conditions used to preserve 
RNA–protein interactions mean that a relatively high 
level of nonspecifically bound fragments is enriched. 
Second, the absence of RNA fragmentation reduces 
binding site resolution. Thus, RIP–seq is highly variable 
and dependent on the natural stability of RNA–protein 
binding278. The use of formaldehyde crosslinking to 
produce a reversible covalent bond between an RNA 
and its interacting proteins279 improves stability and 
reduces nonspecific RNA pull-​down, but formaldehyde 
also generates protein–protein crosslinks. The impact of 
this can be mitigated by mild crosslinking with 0.1% for-
maldehyde (tenfold lower than that used for ChIP–seq 
studies), which generates high-​quality results across 
multiple protein targets280.

The introduction of 254-nm UV crosslinking in 
CLIP75,281 was a critical development that increased the 
specificity and positional resolution of RNA–protein 
interaction analysis methods. UV crosslinking creates a 
covalent bond between protein and RNA at their interac-
tion site but, crucially, does not crosslink protein–protein 
interactions. This stabilizes RNA–protein binding, 
allowing for stringent enrichment that disrupts native 
RNA–protein interactions, reducing the background 
signal. The CLIP protocol has subsequently been the 
basis of much methodological development. Individual-​
nucleotide resolution CLIP (iCLIP)282 incorporates 
UMIs into the library preparation to remove PCR dupli-
cates. It also takes advantage of the common premature 
truncation of cDNA synthesis at crosslinked nucleotides 
to gain quantitative, nucleotide-​resolution mapping of 
the crosslinked sites through amplification of truncated 
cDNAs. Photoactivatable-​ribonucleoside-enhanced 
CLIP (PAR-​CLIP)283,284 attains nucleotide resolution by 
using 4 sU and 356-nm UV crosslinking. The 4 sU is 
incorporated into endogenous RNAs during cell culture, 
and 356-nm UV irradiation only generates crosslinks at 
4 sU incorporation sites (leading to high specificity). 
Detection of the reverse-​transcription-induced T>C 
substitutions in the resulting sequence data enables base-​
pair resolution and allows discrimination of crosslinked 
versus non-​crosslinked fragments, further reducing 
background signal. More recent improvements to CLIP 
have increased its efficiency and sensitivity. Infrared 
CLIP (irCLIP)285 replaces radioisotopic detection with 
infrared gel visualization and gel purification with bead-​
based purification. These changes made the protocols 
easier to adopt and enabled RNA–protein interaction 
analysis from as few as 20,000 cells, compared to the  
1–2 million cells normally used for iCLIP. Enhanced  
CLIP (eCLIP)286 removes quality control and visualiza-
tion of RNA–protein complexes, incorporates barcodes 
in the RNA adaptors that allow samples to be pooled ear-
lier in the protocol and replaces gels with beads. These 
changes were aimed at simplifying the protocols for the 
user, and eCLIP experiments for almost 200 proteins 
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have been produced as part of the ENCODE project287. 
However, neither irCLIP nor eCLIP is currently widely 
adopted, partly because some of the increase in sensi-
tivity of eCLIP and irCLIP might result from decreased 
specificity, as suggested by the decreased enrichment of  
binding motifs and regulated exons at binding sites  
of PTBP1 identified by the two methods288. As the abun-
dance of publicly available data opens new opportunities 
for computational analyses, it is important to carefully 
consider the approaches taken to quality control, fil-
tering, peak calling and normalization of CLIP data, 
which all affect biological interpretation of the data288. 
For a fuller discussion of CLIP protocols for RNA– 
protein interactions, we point interested readers to a 
recent comprehensive review of the topic289.

The dependence of some RRI, and all RNA–protein 
binding, methods on IP restricts studies to proteins with 
well-​characterized antibodies, and nonspecific antibody 
binding remains an issue — although not one confined 
to this field. RNA structure also affects RNA–protein 
interactions; some proteins recognize specific RNA 
secondary structures or compete with those structures 
for access to RNA, which complicates the transfer of 
in vitro discoveries to in vivo biology290,291. Furthermore, 
both structural and RNA–protein interaction meth-
ods generally report averaged data for a specific tran-
script or position. Future developments in laboratory 
methods, in computational approaches and in single-​
molecule sequencing may help decipher some of this 
biological variation.

Conclusions
Wang, Gerstein and Snyder were certainly correct in their 
prediction that RNA-​seq would “revolutionise [how] 
eukaryotic transcriptomes are analysed”292. However, 
even they have most likely been surprised by the scale 
of the transformation. Today it is possible to analyse the 
many aspects of RNA biology that are essential to gain-
ing a functional understanding of the genome, to inves-
tigating development and to determining the molecular 
dysregulation that causes cancer and other diseases. 
While the biological discovery phase is far from over, 
already RNA-​seq tests are being used in the clinic293,294. 
Single-​cell sequencing is becoming standard in many 
laboratories, and spatialomics analysis is likely to follow 
a similar path, enabling its use outside the laboratories 
responsible for developing the current methods. It is also 
possible that long-​read sequencing methods will replace 
Illumina short-​read RNA-​seq as the default method for 
a substantial proportion of users. For this scenario to 
occur, considerable improvements need to be made in 
long-​read sequencing, in terms of increasing throughput 
and decreasing error rates. However, the advantages of 
long-​read mRNA isoform sequencing are such that, if it 
becomes as cheap and reliable as short-​read sequencing 
is today, then, for anything other than degraded material, 
it is likely to be the preferred choice. With this in mind, 
any predictions of how RNA-​seq might develop over the 
next decade are likely to be too conservative.
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