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Association Analysis

* Linkage Analysis used to be the first step in gene
mapping process

* Closely located SNPs to disease locus may co-
segregate due to linkage disequilibrium 1.¢.
allelic association due to linkage.

 The allelic association forms the theoretical
basis for association mapping




Linkage vs. Association

Linkage analysis Is based on pedigree data (within
family)

Assoclation analysis Is based on population data
(across families)

Linkage analyses rely on recombination events

Association analyses rely on linkage disequilibrium

The statistic in linkage analysis iIs the count of the
number of recombinants and non-recombinants

The statistical method for association analysis Is

“statistical correlation” between Allele at a locus with
the trait




Linkage Disequilibrium

« Over time, melotic events and ensuing
recombination between loci should return alleles
to equilibrium.

But, marker alleles mitially close (genetically
linked) to the disease allele will generally remain
nearby for longer periods of time due to reduced
recombination.

This 1s disequilibrium due to linkage, or “linkage
disequilibrium” (LD).




Linkage Disequilibrium (LD)

e Chromosomes are mosaics Ancestor

e Tightly linked markers Present-day

— Alleles associated
— Reflect ancestral haplotypes

« Shaped by

— Recombination history
— Mutation, Drift

Tishkoff and Verrelli (2003)
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Patterns of LD in Human Genome

The human genome has been portrayed as a series of high
Linkage Disequilibrium (LD) regions separated by short
segments of very low LD.

In the high LD regions alleles tend to be correlated with
one another.

The high LD alleles tend to be transmitted from one
generation to the next with a low probability of

recombination.

Such alleles can sometimes be used to infer the state of
nearby loci

The high LD regions are often referred to as blocks

Blocks exhibit low haplotype diversity and most of the
common haplotypes can be defined by relatively small
number of SNPs (3-5)




Haplotype Blocks

« Within the haplotype block (in the high LD
regions) haplotype diversity 1s low.

* Thus, only a few SNPs should be necessary to
1dentify the haplotype structure within these
regions or blocks

* These SNPs are called tag SNPs




Haplotype Blocks

e A haplotype block is a discrete (does not overlap
another block) chromosome region of high LD
and low haplotype diversity.

* They are blocks of the common haplotypes
that represent a particular region of the
chromosomes 1n a population




Haplotype Blocks

Blocks extend many (>100) kbs

All alleles within blocks are 1n strong
associations.

There are no associations between blocks.

In each block, only a few (4-5) haplotypes
account for the majority (90%) of variation.

In each block, only a few SNPs are required
to map the majority of haplotype variation.

Blocks boundaries correspond to
recombination hot-spots




HapMap Project

Formally 1nitiated in October 2002

The HapMap Project 1s a huge international
effort among scientist in Japan, UK,
Canada, China, USA, and Nigeria

Their goal was to determine the common
patterns of DNA sequence variation 1n the
human genome and to make this
information freely available 1n the public
domain

Funded in part by grants from the NIH




HapMap II samples

* Study involves a total of 270 DNA samples
representing peoples from around the world:

* Northern and Western European
* Yoruba (African)

» Japanese

e Han Chinese

* Promises to provide an important basis to

carry out candidate-gene, linkage-based and
genome-wide association studies




HapMap 3 samples

label

Population Sample

# Samples

ASW

African ancestry in Southwest US

90

CEU

Utah residents with northern & western
ancestry from CEPH collection

180

CHB

Han Chinese 1n Beijing, China

90

CHD

Chinese in Metropolitan Denver, Colorado

GIH

Gujarati Indians in Houston, Texas

JPT

Japanese in Tokyo, Japan

LWK

Luhya in Webuye, Kenya

MEX

Mexican ancestry in Los Angeles, CA

MKK

Maasai in Kinyawa, Kenya

TSI

Toscani 1n Italy

YRI

Yoruba in Ibadan, Nigeria




1000 Genomes Project

* The goal of the 1000 Genomes Project 1s to find
most genetic variants that have frequencies of at
least 1% 1n the populations studied using
sequencing. (http://www.1000genomes.org/about)

The plan for the full project is to sequence about
2,500 samples at 4X coverage.

1092 human genomes from 14 populations are
available (Nature 491, 5665 (01 November 2012)
do1:10.1038/nature11632)




Association Study Design

Population-based association tests
— Cases-Control Design

— Ascertain two groups of individuals from the
population: unrelated affected cases and unrelated
unaffected controls.

— Can use standard statistical tests to compare the
relative frequencies of alleles (genotypes) at a
single marker locus in cases and controls (Chi-
sguare test, logistic regression)

— Potentially subject to confounding by population
admixture or stratification




Assoclation Study Design

Family-based association tests

— Ascertain small nuclear families and extended
pedigrees containing affected and unaffected
Individuals

— Use transmission of marker alleles from parents to
offspring.

— Standard statistical tests to compare
transmissions of marker alleles to affected and
unaffected offspring (TDT, sibTDT, Pedigree TDT,
TRANSMIT, etc.)

— Not confounded by admixture or stratification if
conditioned on parents

— Valid test of linkage and association




Genome-wide Association Studies
(GWAS)

 Toscan 1 to 2.5 M SNPs of many people to find
genetic variations associated with a disease

 GWAS are particularly useful in finding genetic

variant that contribute to common, complex
diseases, such as asthma, cardiovascular diseases,
cancer, diabetes, obesity, and mental disorders.

Source: http://www.genome.gov/20019523#1
http://www.genome.gov/26525384




Why GWAS will enable us to find
disease genes?

It utilizes linkage disequilibrium between SNPs
and putative gene loci.

M, D

5=.5 5=8

The coverage of the genome by SNPs has to be
excellent

Availability of genome-wide SNPs chip




First Successtful GWAS on Age-Related Macular

degeneration
Science: March 10, 2005

Complement Factor H

Polymorphism in Age-Related
Macular Degeneration

Robert J. Klein,! Caroline Zeiss, &~ Ermuily ™. Chews ==
Jern—-Yuse Tsai, ¥ Richard S. Sackler,! Chad Haynes_-'
Alice K. HEr‘lr‘lir‘lg,S Johmnm Paul SanGiowvanni,T Shrikant M. Mane,©
Susam T. Hayne_? Michael B. Bracken,” Frederick L. Ferris, &
Jare Ott,! Colin Barnstable, < Josephine Hoh” +

Age-—related macular degeneration (AMD) is a major cause of blindrness in the
elderlby. We report a genome-wide screen of 96 cases and S50 controls for
polbymorphisms associated wwith AMD. Among 116,204 single-nucleotide
polymorphisms genotyped, amn intronic armndd commMmon variant in the comple-
rment factor H gerne (CFH) is strongly associated with AMD (nominal & value
=10 7). In individouals homozygous for the risk allele, the likelihood of AMD is
imncreased by a factor of 7.4 (952 confidence interval 2.9 to 19). Resequencing
revealed a polymorphism in linkage diseqguilibriurm with the risk allele
representing a tyrosine-histidine change at amimnoe acid @402, This polbyrmor-
phism is inm a region of CFH that binds heparin and C-reactive proteim. T e CF~

gene is located on chromosorme 1 in a region repeatedly linked to ARMD in
family-based studies.

Using 96 cases and 50 controls Klein et al. (2005) found CFH

gene on chromosome 1 (p=4x10-%, OR=4.60) using 100K affy
chip
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What steps needed for GWAS

Use appropriate design

— Pedigrees, case-control, unrelated individuals
Determine the sample size

— Power

Choose SNP genotyping platform
— Afty, [llumina, Perlegen
Perform QC (HWE, Mendelian errors, outliers, etc.)
Imputation
Choose appropriate Association test




Quality Control (QC)

e The first step of GWAS analysis 1s the quality
control of the genotypic and phenotypic data.
There are number of procedures needed to ensure
the quality of genotype data both at the genotyping
laboratory and after calling genotypes using

statistical approaches.

The QC and association analysis of GWAS data
can be performed using the robust, freely available,

and open source software PLINK developed by
Purcell et al. (2007)




Quality Control (QC)

« Sex Inconsistency: It is possible that self-reported
sex of the individual 1s incorrect. Sex inconsistency
can be checked by comparing the reported sex of each
individual with predicted sex by using X-chromosome
markers’ heterozygosity to determine sex of the
individual empirically.

Relatedness and Mendelian Errors: Another kind
of error that can occur in genotyping 1s due to sample
mix-up, cryptic relatedness, duplications, and pedigree
errors such as self-reported relationships that are not
accurate. The relationship errors can be corrected by
consulting with the self-reported relationships and/or
using inferred genetic relationships.




Quality Control (QC)

« Batch Effects: For GWAS, samples are processed together
for genotyping in a batch. The size and composition of the
sample batch depends on the type of the commercial array,
for example, an Affymetrix array can genotype up to 96
samples, and an Illumina array can genotype up to 24
samples. To minimize batch effects, samples should be

randomly assigned plates with different phenotypes, sex,
race, and ethnicity.

The most commonly used method 1s to compare the average
minor allele frequencies and average genotyping call rates
across all SNPs for each plate. Most genotyping laboratories
perform batch effect detection and usually re-genotype the
data if there 1s a batch effect or a plate discarded when there
1s a large amount of missing data.




Quality Control (QC)

« Marker and sample genotyping efficiency or
call rate: Marker genotyping efficiency is defined
as the proportion of samples with a genotype call
for each marker. If large numbers of samples are
not called for a particular marker, that 1s an
indication of a poor assay, and the marker should

be removed from further analysis. A threshold for
removing markers varies from study to study
depending on the sample size of the study.
However, usual recommended call rates are
approximately 98% to 99%.




Quality Control (QC)

« Population stratification: There are a number of
methods proposed to correct for population
substructure. Three commonly used methods to
correct for the underlying variation in allele
frequencies that induces confounding due to
population stratification:

— genomic control
— structured association testing
— principal components (Most Commonly Used Method)




Population Stratification

* Population stratification: Sample consists of
divergent populations

» Case-control studies can be affected by
population stratification




Population 1

A

Allele
JAN

Allele
B

Affected

64

16

Unaffected

16

4

Total

80

20

False positive due to admixture

Population 2
A

Allele
A

Allele
B

Affected

4

16

Unaffected

16

64

Total

20

80

OR=1.0 (Cl 0.29-3.4), p-value=1 OR=1.0 (Cl 0.29-3.4), p-value=1

Combine both population with equal proportion

Allele A

Allele B

Total

Affected

68

32

100

Unaffected

32

68

100

Total

100

100

OR=4.5 (Cl 2.5-8.2), (p-value =6.6 x 10-7 )




True association can be masked due to
admixture

Population 1 Population 2

P

Allele Allele
\ B Allele Allele

A B
Affected 20 80

Affected 80 20
Unaffected |80 20 Unaffected | 20 80
Total 100 100

Total 100 100
OR=0.06, p-value = 4.4x1014 OR=16.0, p-value = 4.4x1014

P

Combine both population with equal proportion

Allele A | Allele B | Total
Affected 100 100 200
Unaffected 100 100 200
Total 200 200

OR=1, p-value=1




How to correct for stratification

 Stratification can be adjusted 1n your
analysis by using.
— Family-based design
 TDT in family-based association

— Population-based design

e Admixture mapping: Structured Association
Testing, Genomic Control, Regional Admixture
mapping, Principal Components Method




Quality Control (QC)

* Principal components analysis (PCA) uses
thousands of markers to detect population
stratification and Principal Components (PCs)
then can be used to correct for stratification by
modeling PCs as covariates in the model

* PCs can be calculated using a program Eigenstrat
(Patterson et al., 2006; Price et al., 2006). There
are two 1ssues with using PCA, (1) how many

SNPs to use, and (2) how many PCs should be
included as covariates 1n the association analysis.




Quality Control (QC)

« Hardy-Weinberg equilibrium (HWE) filter: The HWE
test compares the observed genotypic proportion at the
marker versus the expected proportion. Deviation from
HWE at a marker locus can be due to population
stratification, inbreeding, selection, non-random mating,
genotyping error, actual association to the disease or trait

under study, or a deletion or duplication polymorphism.
However, HWE is typically used to detect genotyping
errors. SNPs that do not meet HWE at a certain threshold
of significance are usually excluded from further
association analysis.




Quality Control (QC)

« Marker allele frequency filter: It is also
important to discard SNPs based on minor allele
frequency (MAF). Most GWAS studies are
powered to detect a disease association with
common SNPs (MAF > 0.05). The rare SNPs
may lead to spurious results due to the small
number of homozygotes for the minor allele,
genotyping errors, or population stratification




Genotype Imputation

e [t 1s common to impute missing SNP data, e.g. from 1 M
SNPs to 2.5 M SNPs using either HapMap or 1000
Genomes data

* There are number of programs available to perform
imputation

— IMPUTE2

(http://mathgen.stats.ox.ac.uk/impute/impute v2.html)

— MACH

(http://www.sph.umich.edu/csg/abecasiss/MACH/tour/1
mputation.html)

— BEAGLE

(http://faculty.washington.edu/browning/beagle/beagle.
html)




Why so much interest in imputing
missing genotypes?

 Inexpensive “In silico” genotyping strategies

» Estimate genotypes for individuals related to
those in GWAS sample

» Estimate additional genotypes for individuals 1n
the GWAS sample
— Facilitate comparisons across studies

— Improve coverage of the genome (more genotypes
better the coverage)




Family Data Imputation

* Much easier

e Can get very accurate genotypes

* Based on the
P (missing genotype | IBD sharing within
haplotypes)




Population Data

In pedigrees, we expect relatively long stretches
of shared chromosome

In population sample, these stretches will
typically be much shorter

But, this should not stop us for imputing!

We can borrow the information from known
haplotype data sets (HapMap, 1000 Genomes)
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Issues with Imputation

Requires large scale computing resources

Need to assess quality of imputation

— Compare imputed genotypes to actual genotypes
Error rates are higher than for genotyped SNPs
Works less well for rarer alleles

Best to take account of uncertainty imputed SNPs 1n
analysis




Analysis Procedures
* One Stage procedure

— All markers are typed on all samples
— Replication is left for others

 Two Stage procedure
— All markers are typed on all samples at stage 1

— Replication study is performed at stage 2 as a
replication study on a different sample & only
significant SNPs from stage 1 are used

« Replication

— Replication 1s must from a protection for false positives

— Most of the journals require replication




Study Designs & Methods for GWAS

Details

Advantages

Disadvantages

Statistical analysis method

Cross-sectional

Cohort

Case-control

Extreme values

Case-parent triads

Case-parent-
grandparent septets
General pedigrees

Case-only

DMA-pooling

Genotype and phenotype (ie, note disease status
or quantitative trait value) a random sample from
population

Genotype subsection of population and follow
disease incidence for specified time period
Genotype specified number of affected (case) and
unaffected (control) individuals. Cases usually
obtained from family practitioners or disease
registries, controls obtained from random
population sample or convenience sample
Genotype individuals with extreme (high or low)
valves of a quantitative trait, as established from
initial cross-sectional or cohort sample

Genotype affected individuals plus their parents
(affected individuals determined from initial
cross-sectional, cohort, or disease-outcome
based sample)

Genotype affected individuals plus their parents
and grandparents

Genotype random sample or disease-outcome

based sample of families from general population.

Phenotype for disease trait or quantitative trait
Genotype only affected individuals, obtained
from initial cross-sectional, cohort, or disease-
outcome based sample

Applies to variety of above designs, but genotyping

is of pools of anywhere between two and 100
individuals, rather than on an individual basis

Inexpensive. Provides estimate of
disease prevalence

Provides estimate of disease
incidence

Mo need for follow-up.
Provides estimates of exposure
effects

Genotype only most informative
individuals hence save on
genotyping costs

Robust to population stratification.

Can estimate maternal and
imprinting effects

Robust to population stratification.

Can estimate maternal and
imprinting effects

Higher power with large families.
Sample may already exist from
linkage studies

Most powerful design for
detection of interaction effects

Potentially inexpensive compared
with individual genotyping (but
technology still under
development)

Few affected individuals if
disease rare

Expensive to follow-up.
lssues with drop-out
Requires careful selection of
controls.

Potential for confounding
(eq, population stratification)

No estimate of true genetic
effect sizes

Less powerful than case-
control design

Grandparents rarely available

Expensive to genotype.
Many missing individuals

Can only estimate interaction
effects. Very sensitive to
population stratification
Hard to estimate different
experimental sources of
variance

HJ Cordell, DG Clayton. Genetic association studies. Lancet 2005; 366: 1121-31

Logistic regression, x” tests of
assodiation or linear regression

Survival analysis methods

Logistic regression,
¥” tests of assodiation

Linear regression, non-parametric,
or permutation approaches

Transmission/disequilibrium test,
conditional logistic regression or
log-linear models

Log-linear models

Pedigree disequilibrium test,

family-based association test, quantitative
transmission/disequilibrium test

Logistic regression, ¥ tests of

association

Estimation of components of variance




Statistical Methods & Software for

Genetic Association Studies

Approach Reference Software URL
Logistic regression Model log odds of disease as linear function of 20,74, 20 Standard statistical package http:/ fwww stata.com/
underlying genotype variables (eq, Stata, SAS, 5-FPlus, R) http:f fananw sas.comf
http:/ fwww insightful.com/products/splus/
http:f fwnanw r-project.org/
y” test of assodiation Test for independence of disease status and 20 Standard statistical package See above
genetic risk factor
Linear regression Model quantitative trait as linear function of 75 Standard statistical package See above
underlying genotype variables
Survival analysis Model survivor function or hazard as function of 20,52 Standard statistical package See above
underlying genotype variables
Transmission/ Test departure of transmission of alleles from 71, 76-78 Warious (eg, Genehunter, RC-TDT, http:/ ffherc.orgflabs/kruglyak/ Downloads/index_html
disequilibrium test heterozygous parents to affected offspring Genassoc, Transmit, Unphased http:/ fwwnw uni-bonn.de/ ~umt70e/soft.htm
from null hypothesis of half http:/ fwww-gene.cimr.cam.ac.uk/ dayton/software/
http/ fwnwew mirc-bsu.cam.ac ukfpersonal (frank/
Conditional logistic Calculate conditional probability of affected 54, 60, 79, 80 Genassoc http:/ fwrann-gene.cimr.cam.ac.vk/dayton/software/
regression offspring genotypes, given parental genotypes Unphased http:f fwnanw .mirc-bsu.cam.ac.uk/personalffrank/
Log linear models Model counts of genotype combinations for 57.58 59 Standard statistical package See above
mother, father, and affected offspring
Pedigree Test departure of transmission of alleles to 81,382 Pedigree disequilibrium test http:f fwww chg.duke eduy software/ pdt.html
disequilibrium test affected pedigree members from null expectation Unphased http//www mrc-bsu.cam.ac.ukfpersonal ffrank/
Family-base Tests for assodiation or linkage between disease 83-86 Family-based association test http:f farwew biostat harvard .edu/ ~fbat/fbat.htm
association test phenotypes and haplotypes by utilising
family-based controls
Quantitative transmission/ Linkage disequilibrium analysis of quantitative 87, 88 Quantitative transmission/ http:/ fwranw sph.umich.edu/ csgfabecasis/ QTDT/
disequilibrium test and qualitative traits based on variance components disequilibrium test
DNA pooling Test for differences in allele frequencies in 61, 89-91 Standard statistical package See abave

different pooled samples while estimating
components of variance due to experimental error

The references are those from the following paper:

HJ Cordell, DG Clayton. Genetic association studies. Lancet 2005; 366: 1121-31




Commonly Used Software

FBAT

— Family based association analysis
PLINK

— Whole genome association analysis toolset

SAGE (ASSOC)

» Statistical Analysis for Genetic Epidemiology
LMEKIN in R

e Mixed-model procedure to analyze familial data
STRUCTURE
— Population structure inference

EIGENSTRAT

— Detects and corrects for population stratification in genome-wide association
studies
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(HWE p = 5.87e-203 , Call Rate = 100 %)
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Life After Linkage & GWAS

Copy number variations (CNVs)
— Duplications, deletions

Next Generation Sequencing
Whole-genome methylation

— Modification of a molecule by the addition of a
methyl group

Metabolomics

Microbiome
RNA-Seq




