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Repeated Sequences

simple sequence repeat

variable number tandem repeat

highly repeated sequences at
centromeric and subtelomeric regions

segmental duplications

...GCGACACACACACACACAGT...

14-100 base pair repeat unit
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ENCODE Findings

annotated 20,687 protein-encoding genes

average 6.3 alternatively spliced isoforms per gene

8,801 small RNAs; 9,640 long non-coding
transcripts

>80% genome transcribed in some cell type

>400,000 enhancers and 70,000 promoters

Friday, March 29, 13



Non-Coding RNAs

tRNA transfer RNA protein synthesis

rRNA ribosomal RNA protein synthesis
snRNA small nuclear RNA splicing
snoRNA | small nucleolar RNA RNA modification
miRNA micro RNA gene regulation
siRNA | small interfering RNA viral defense
IncRNA | long non-coding RNA | gene regulation/unknown
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Long Non-Coding RNAs

® antisense

® intergenic

® sense overlapping
® sense intronic

® processed transcript
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(Genetic Variation

nucleotides
1 10 102 103 104 10° 106 107 108

nucleotide

change .
chromosome abnormality

short sequence

repeat : : L
variable number genomic deletion/duplication

tandem repeat

intragenic deletion/duplication

Friday, March 29, 13



Point Mutations

TCC CAAATC GTC CCT CGAGTT wild type sequence
ser gin ile val pro arg val

TCC CAGATC GTC CCT CGAGTT silent mutation
ser gln ile val pro arg val

TCC CAAATC CTC CCT CGAGTT conservative mutation
ser gln ile leu pro arg val

TCC CAAATC GTC GCT CGAGTT non-conservative mutation
ser gin ile val ala arg val

TCC CAAATC GTC CCT TGAGTT stop mutation
ser gln ile val pro stop

TCC CAGAAT CGTCCC TCGAGTT frameshift mutation
ser gln asn arg pro ser ser
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plicing Mutations
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Triplet Repeat
Expansions

e se e,

Fragile X syndrome  Friedreich ataxia  gingcerebellar ataxias myotonic dystrophy

Huntington disease

DRP atrophy

Spinal & bulbar atrophy
Machado-Joseph disease
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Multiexon Deletion

Becker

Duchenne

Numbers indicate 1st, 2", or 3" position in a triplet codon
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DNA Repair
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Frequency of Mutation

doi:10.1038/nature09534

A map of human genome variation from
population-scale sequencing

The 1000 Genomes Project Consortium*

The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation
for investigating the relationship between genotype and phenotype. Here we present results of the pilot phase of the
project, designed to develop and compare different strategies for genome-wide sequencing with high-throughput
platforms. We undertook three projects: low-coverage whole-genome sequencing of 179 individuals from four
populations; high-coverage sequencing of two mother-father-child trios; and exon-targeted sequencing of 697
individuals from seven populations. We describe the location, allele frequency and local haplotype structure of
approximately 15 million single nucleotide polymorphisms, 1 million short insertions and deletions, and 20,000
structural variants, most of which were previously undescribed. We show that, because we have catalogued the vast
majority of common variation, over 95% of the currently accessible variants found in any individual are present in this
data set. On average, each person is found to carry approximately 250 to 300 loss-of-function variants in annotated
genes and 50 to 100 variants previously implicated in inherited disorders. We demonstrate how these results can be used
to inform association and functional studies. From the two trios, we directly estimate the rate of de novo germline base
substitution mutations to be approximately 10~° per base pair per generation. We explore the data with regard to
signatures of natural selection, and identify a marked reduction of genetic variation in the neighbourhood of genes,
due to selection at linked sites. These methods and public data will support the next phase of human genetic research.

If there are 108 sperm per ejaculate, in principle every base
could be mutated in at least one sperm cell and each germ cell
has around 10 mutations
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Human Mendelian
Phenotypes

OMIM Entry Statistics:

Number of Entries in OMIM (1 January 2012) :

Prefix Autosomal X Linked Y Linked Mitochondrial Totals
* Gene description 13,041 640 48 35 13,764
+ Gene and phenotype, combined 161 6 0 2 169
# Phenotype description, molecular basis known 3,064 258 4 28 3,354
% Phenotype description or locus, molecular basis unknown 1,654 136 5 0 1,795
Other, mainly phenotypes with suspected mendelian basis 1,799 129 2 0 1,930
Totals 19,719 1,169 59 65 21,012
Cumulative Pace of Gene Discovery 1981-2003'
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http://www.genome.gov/Pages/News/PaceofDiseaseGeneDiscovery.pdf
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Genetic Linkage




Polymorphism

Polymorphism: occurrence of at least two alleles at a locus having a
frequency of at least 1%

Type Description
VNTR 14-100 bp repeat unit with variable number
of repeats
STR di, tri, tetranucleotide repeats
SNP Single base change
CNV Copy humber variation

11
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LOD Analysis

15 36 25 19
13 45 29 36
S R O 5 O .
12 35 1 34 67 14 22 14 25 26 39 23 69 57
R
15 25 25 36 46 24 12 56 25 26 59 67
Family 1 Family 2
37 11 Py
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14
Family 4 Family 5
0
Family | Sibs | Recombinants Nonrecombinants 0 0.1 0.2 0.3 0.4
1 12 2 10 -® 1.15 1.25 1.02 0.60
2 9 2 7 -® 0.39 0.96 0.58 0.36
3 8 2 6 -® 0.13 0.43 0.43 0.28
4 10 2 8 - % 0.64 0.84 0.73 0.44
5 7 1 6 -® 0.83 0.83 0.65 0.38
Total 46 7 39 - 3.14 4.31 3.41 2.06
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Linkage Disequilibrium
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Positional Cloning
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Genome Browser
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Exome vs. Genome
Sequencing
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Gene Discovery

Table 1 Direct identification of the gene for a mendelian disorder by exome resequencing

2 3 4 5 6 7 8
ICodngF ! } }
Jurr & 5 3 2S5 5 -k 8
L0 = 1 Do O B8 N
O S &5 Sl 6 O =0T
ge 5 %

Kindred 1-A Kindred 1-B Kindred 1 (A+B) Kindreds 1+2 Kindreds 1+2+3
Filter Dominant Recessive Dominant Recessive Dominant Recessive Dominant  Recessive Dominant Recessive
NS/SS/I 4,670 2,863 4,687 2,859 3,940 2,362 3,099 1,810 2,654 1,525
Not in dbSNP129 641 102 647 114 369 53 105 25 63 21
Not in HapMap 8 898 123 923 128 506 46 117 7 38 4
Not in either 456 31 464 33 228 9 26 1* 1*
Predicted damaging 204 6 204 12 ssl 1 5 0 2 0

Ng, S., et al. Nature Genetics 2010;42:30
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Mendelian Disorders
Sequencing Centers

Mendelian Disorders Sequencing Centers

O Program Rationale
O Grantees of the Program
© Program Contacts

Program Rationale

Discovering the genes and genetic variants underlying human Mendelian disorders is of significant biomedical relevance. The knowledge of those variants, which
are rare and highly penetrant, will facilitate rapid and accurate diagnosis of Mendelian disorders and might lead to new therapeutic approaches. This knowledge
can also lead to insight about the common or more complex phenotypes that involve similar genes, pathways, and phenotypes. In the long run, a
comprehensive collection of rare and highly penetrant variants would be a highly valuable resource for understanding basic human genetics and would identify
entry points into fundamental developmental and physiological pathways.

While the genetic basis of more than 3000 Mendelian disorders has been determined so far, the genetic basis remains to be determined for a larger number of
confirmed or suspected Mendelian disorders. Recent advances in genome technology and computational methods have made it possible to identify the genetic
basis of Mendelian disorders using genome-wide approaches in a more rapid and cost-effective way than linkage mapping and candidate gene approaches.

The Mendelian Disorders Genome Centers Program aims to contribute to the discovery of the genetic basis of most Mendelian disorders in two main ways. The
first is to use genome-wide sequencing and other genomic approaches to discover the genetic basis underlying as many disorders and health-related traits as
possible, spanning the various Mendelian inheritance patterns, during the funding period. The second is to build a better foundation for elucidating the genetic
basis of Mendelian disorders by 1) establishing and disseminating information about effective approaches to the identification of the causative genetic variants,
and gaining insight about the overall tractability of Mendelian disorders to state-of-the-art genomic approaches, and 2) compiling a comprehensive list of
available human samples of Mendelian disorders and other health-related Mendelian traits as a public resource to help coordinate genetic variant discovery
activities that will be carried out by many groups.

Top of page

Grantees of the Program
The currently funded centers are:

« University of Washington Center for Mendelian Genomics
* Yale Center for Mendelian Disorders

« Baylor-Johns Hopkins Center for Mendelian Genetics

In addition to these centers, the Genome Sequencing and Analysis Centers also carry out efforts to discover the genetic basis of Mendelian disorders (see above).

Top of page

Program Contacts
For general inquiries about the program, please contact:

Lu Wang, Ph.D.
Program Director
E-mail: wanglu@mail.nih.gov

If you wish to provide samples with confirmed or suspected Mendelian disorders or traits for the Mendelian Disorders Genome Centers to
study, please contact the Coordination Site of the Program at gmendel@uw.edu. The Program will decide on the feasibility and priority of
sequencing these samples.
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Genomic Diagnosis

NTSE Mutations and Arterial Calcifications

Cynthia St. Hilaire, Ph.D., Shira G. Ziegler, B.A., Thomas C. Markello, M.D., Ph.D.,
Alfredo Brusco, Ph.D., Catherine Groden, M.S., Fred Gill, M.D.,
Hannah Carlson-Donohoe, B.A., Robert J. Lederman, M.D.,

Marcus Y. Chen, M.D., Dan Yang, M.D., Ph.D., Michael P. Siegenthaler, M.D.,
Carlo Arduino, M.D., Cecilia Mancini, M.Sc., Bernard Freudenthal, M.D.,
Horia C. Stanescu, M.D., Anselm A. Zdebik, M.D., Ph.D.,

R. Krishna Chaganti, M.D., Robert L. Nussbaum, M.D., Robert Kleta, M.D., Ph.D.,
William A. Gahl, M.D., Ph.D., and Manfred Boehm, M.D.

Making a definitive diagnosis: Successful clinical
application of whole exome sequencing in a child with
intractable inflammatory bowel disease

Elizabeth A. Worthey, PhD"?, Alan N. Mayer, MD, PhD?*>, Grant D. Syverson, MD?,

Daniel Helbling, BSc’, Benedetta B. Bonacci, MSc®, Brennan Decker, BSc’, Jaime M. Serpe, BSCE,
Trivikram Dasu, PhD’, Michael R. Tschannen, BSc’, Regan L. Veith, MSc?, Monica J. Basehore, PhD?,
Ulrich Broeckel, MD, PhD"?7, Aoy Tomita-Mitchell, PhD"*3, Marjorie J. Arca, MD*,

James T. Casper, MD?7, David A. Margolis, MD*?, David P. Bick, MD"->>, Martin J. Hessner, PhD"?,
John M. Routes, MD*?, James W. Verbsky, MD, PhD*?, Howard J. Jacob, PhD"*?*,
and David P. Dimmock, MD"->

Genetics v Medicine » Volume 13, Number 3, March 2011 |

N ENGL) MED 364;5 NEJM.ORG FEBRUARY 3, 2011
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