Sequencing DNA

Human Whole Genome Sequencing

- Initial Ref Sequence \$300 million and took about a decade. (Draft reported in 2001)
- Craig Venter's Genome for ~\$10 million. (Pub Oct 2007).
- Yoruban from Nigeria in 8 weeks for \$250,000. Approx. 30X coverage. (Pub Nov. 2008)
- Han Chinese in 8 weeks for ~\$500,000 at approx. 36X coverage.
- Korean Individual at 27.8X (Pub July 2009).
- Female patient with AML. Sequenced normal and tumor from same patient. 98 full runs on GAI for tumor DNA and 34 full runs for normal skin cell DNA. ~1.5 years to compete both genomes.
- As of January 2012 a human genome can be sequenced for about \$5,000 at an average read depth of 30X in 10 days

Applications

- Whole Genome Sequencing
- Exome Sequencing
- Targeted Genomic Sequencing
- Chromatin-IP-Sequencing
- DNAse I Hypersensitivity Sequencing
- Methyl-Seq (RRBS, MeDIP, etc)
- Microbiome Sequencing
- Metagenomics

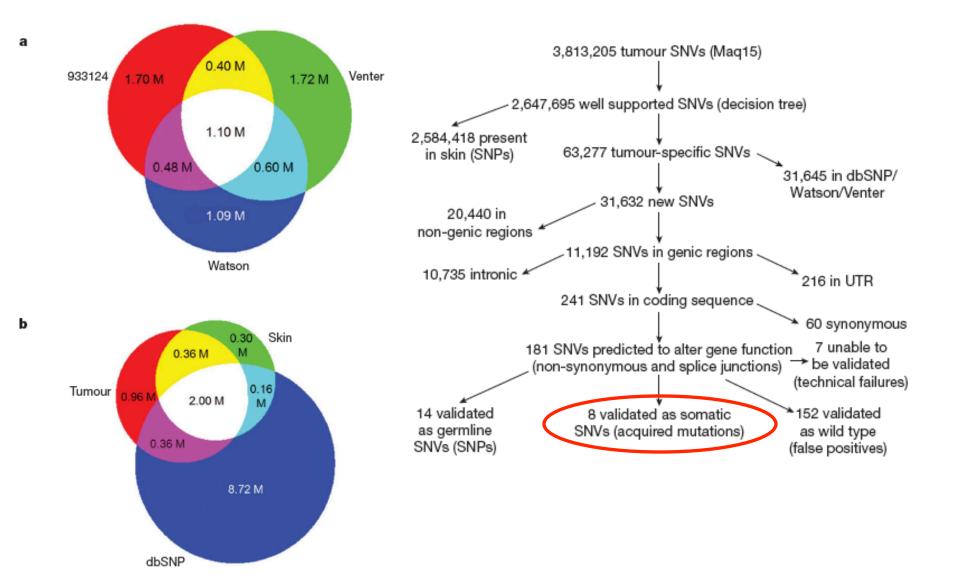
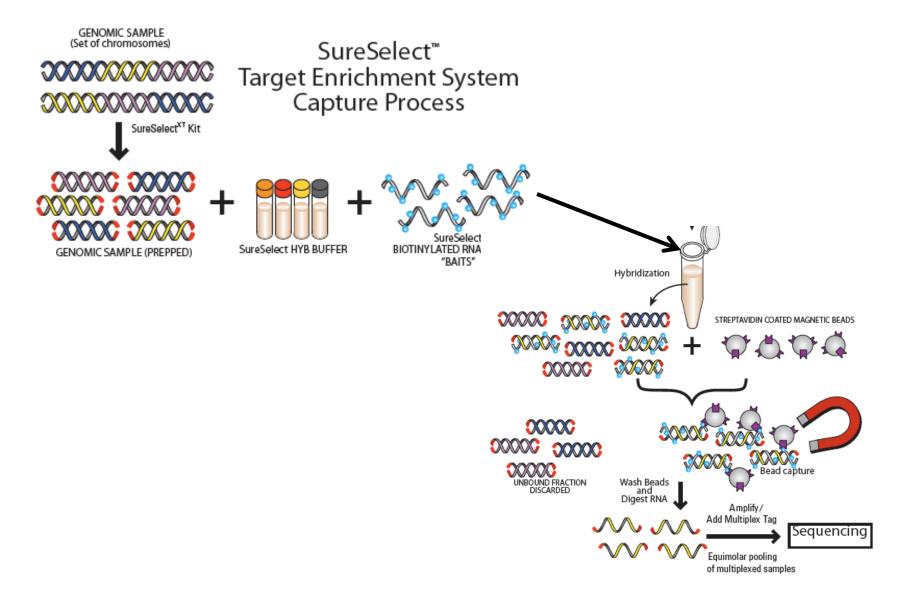

Genomic Sequence of the AML Genome: The Numbers

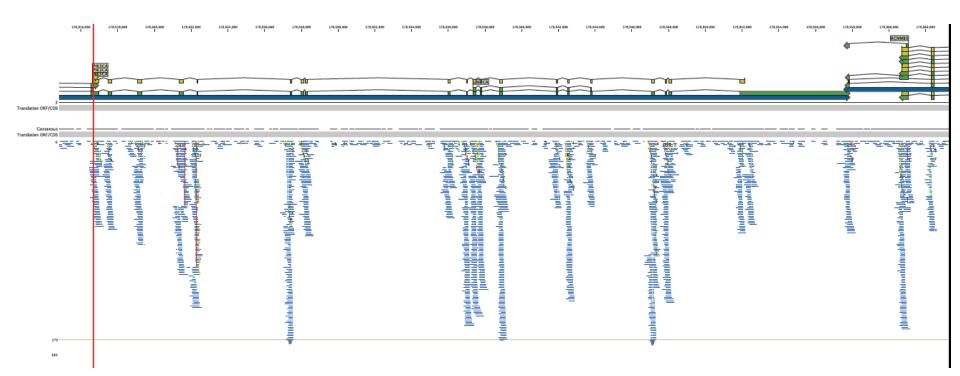
Table 1 Tumour and skin genome coverage from patient 933124	Table 1	Tumour and	skin genome coverage	from patient 933124
---	---------	------------	----------------------	---------------------


	Tumour	Skin			
Libraries	4	3			
Runs	98	34			
Reads obtained	5,858,992,064	2,122,836,148			
Reads passing quality filter	3,025,923,365	1,228,177,690			
Bases passing quality filter	98,184,511,523	41,783,794,834			
Reads aligned by Maq	2,729,957,053	1,080,576,680			
Reads unaligned by Maq	295,966,312	138,276,594			
SNVs detected with respect to hg18 (no Y) SNVs (chr 1–22) detected with respect to hg18 SNVs also present in dbSNP SNVs also present in Venter genome SNVs also present in Watson genome SNVs not in dbSNP/Venter/Watson SNVs not in dbSNP/Venter/Watson/skin	3,811,115 3,681,968 (100.0%) 2,368,458 (64.3%) 1,499,010 (40.7%) 1,573,435 (42.7%) 1,223,830 (33.2%) 925,200 (25.1%)	2,918,446 2,830,292 (100.0%) 2,161,695 (76.4%) 1,383,431 (48.9%) 1,456,822 (51.5%) 591,131 (20.9%)			
HQ SNPs	46,494 (100.0%)	46,572 (100.0%)			
HQ SNPs where reference allele is detected	42,419 (91.2%)	38,454 (82.6%)			
HQ SNPs where variant allele is detected	43,164 (92.9%)	39,220 (84.2%)			
HQ SNPs where both alleles are detected	42,415 (91.2%)	38,454 (82.6%)			

Assessments are shown of the haploid and diploid coverage of the tumour and skin genomes from AML patient 933124. Chr, chromosome; hg18, human genome version 18; HQ, high quality.

AML:Comparisons

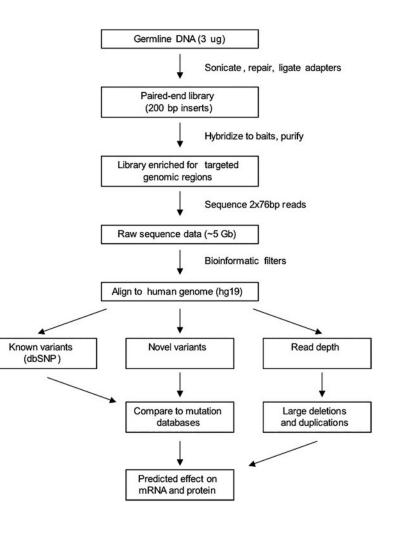
SureSelect Exome Capture



Disease Genes Discovered by Direct Whole Exome Sequencing*

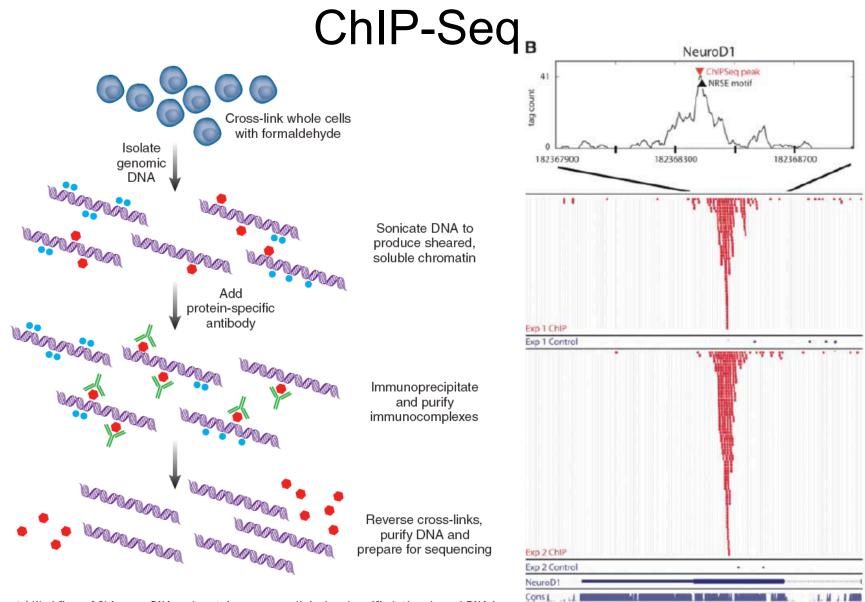
MYH3	Freeman-Sheldon Syndrome	Ng SB, et al. 2009. Nature 462
SLC26A3	Bartter Syndrome	Choi M, et al. 2009 PNAS 106(45)
DHODH	Miller Syndrome	Ng SB, et al. 2010 Nat Genet 42(1).
FLVCR2	Fowler Syndrome	Lalonde, E. et al. 2010 Hum Mutat 31(8).
FLNA	Terminal Osseous Dysplasia (TOD)	Sun Y., et al. 2010 Am J. Hum Genet 87(1).
GPSM2	Nonsyndromic Hearling Loss (DFNB82)	Walsh, T. et al. 2010 Am J. Hum Genet 87(1).
HSD17B4	Perrault Syndrome/DBP	Pierce SB, et al. 2010 Am J. Hum Genet 87(2).
MLL2	Kabuki Syndrome	Ng SB, et al. 2010 Nat Genet 42(9).
ABCG5	Hypercholesterolemia	Rios J., et al. 2010 Hum Mol Genet 19(22).
WDR62	Brain Malformations	Bilguvar K, et al. 2010 Nature 467(7312).
PIGV	Hyperphosphatasia Mental Retardation (HPMR)	Krawitz PM, et al. 2010 Nat Genet 42(10)
WDR35	Sensenbrenner Syndrome	Gilissen C, et al. 2010Am J Hum Genet 87(3).
SDCCAG8	Nephromophthisis-related Ciliopathies	Otto EA, et al. 2010 Nat Genet 42(10).
STIM1	Kaposi Sarcoma	Byn M, et al. 2010 J Exp Med 207(11).
SCARF2	Van Den Ende-Gupta Syndrome	Anastasio N. et al. 2010 Am J Hum Genet 87(4).
C20orf54	Brown-Vialetto-Van Laere Syndrome	Green P, et al. 2010 Am J Hum Genet 86(3).
MASP1	Carnevale, Malpuech, OSA and Michels Syndromes	Sirmaci A, at al. 2010 Am J Hum Genet 87(5).
ABCC8	Neonatal Diabetes Mellitus	Bonnefond A, et al. 2010 PLoS One 5(10).
BAP-1	Metastasizing Uveal Melanomas	Harbour JW, et al. 2010 Science Nov 4 Epub.
ACAD9	Complex I Deficiency	Haack TB, et al. 2010 Nat Genet Nov 7 Epub.
DYNC1H1	Mental Retardation	Vissers LELM, et al. 2010 Nat Genet 10.1038/ng.712
RAB39A	Mental Retardation	Vissers LELM, et al. 2010 Nat Genet 10.1038/ng.712
YY1	Mental Retardation	Vissers LELM, et al. 2010 Nat Genet 10.1038/ng.712
DEAF1	Mental Retardation *As of 23 Nov. 2010	Vissers LELM, et al. 2010 Nat Genet 10.1038/ng.712

AS OF 23 NOV. 2010


Exome Capture-PIK3Ca

Targeted Re-sequencing

The ability to capture specific sequences in the genome


Microarrays Long range PCR Solution capture on Biotin labeled oligos HaloPlex Genomic Capture of Breast Cancer Relevant Genes Followed by Next-Gen Sequencing.

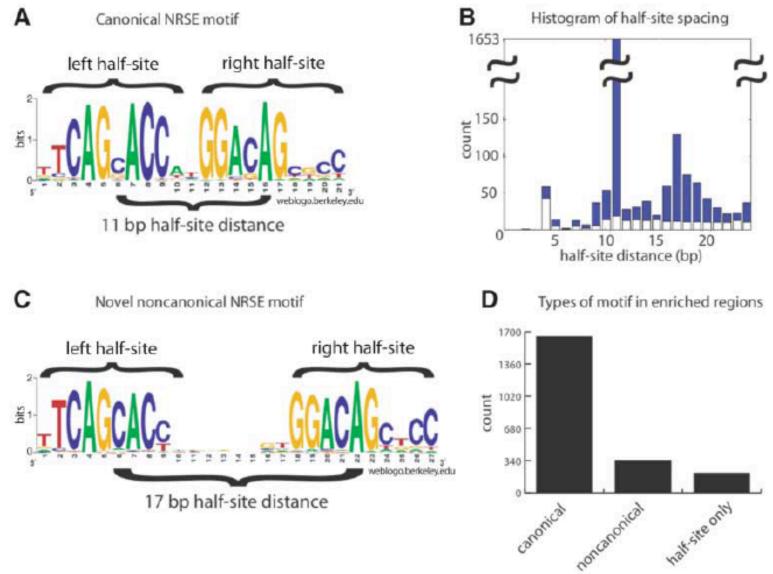
	Chromosome	Start	End
BRCA1	17	41,186,313	41,347,712
BRCA2	13	32,879,617	32,983,809
CHEK2	22	29,073,731	29,147,822
PALB2	16	23,604,483	23,662,678
BRIP1	17	59,759,985	59,940,755
p53	17	7,561,720	7,600,863
PTEN	10	89,613,195	89,738,532
STK11	19	1,195,798	1,238,434
CDH1	16	68,761,195	68,879,444
ATM	11	108,083,559	108,249,826
BARD1	2	215,583,275	215,684,428
MLH1	3	37,024,979	37,102,337
MRE11	11	94,140,467	94,237,040
MSH2	2	47,620,263	47,720,360
MSH6	2	48,000,221	48,044,092
MUTYH	1	45,784,914	45,816,142
NBN	8	90,935,565	91,006,899
PMS1	2	190,638,811	190,752,355
PMS2	7	6,002,870	6,058,737
RAD50	5	131,882,630	131,989,595
RAD51C	17	56,759,963	56,821,692

Walsh T et al. PNAS 2010;107:12629-12633

Johnson et al., Science 316:1497 (2007)

NRSE motif

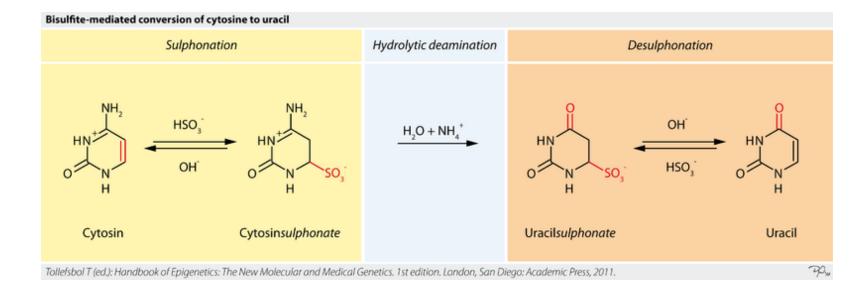
chr2: 182366500

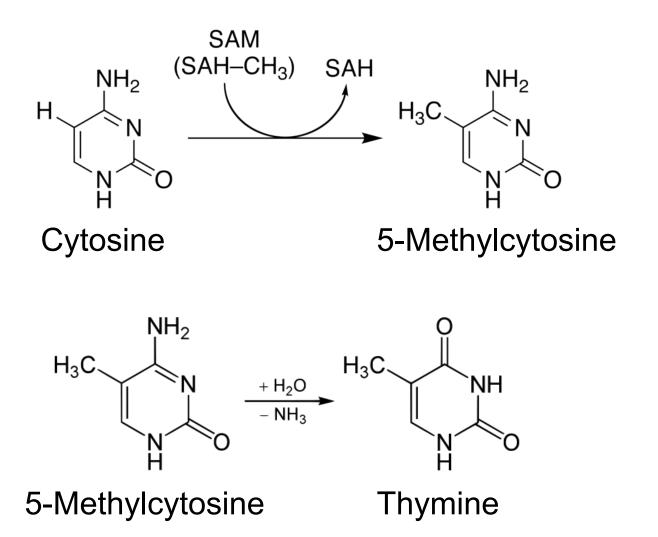

182367500

182368500

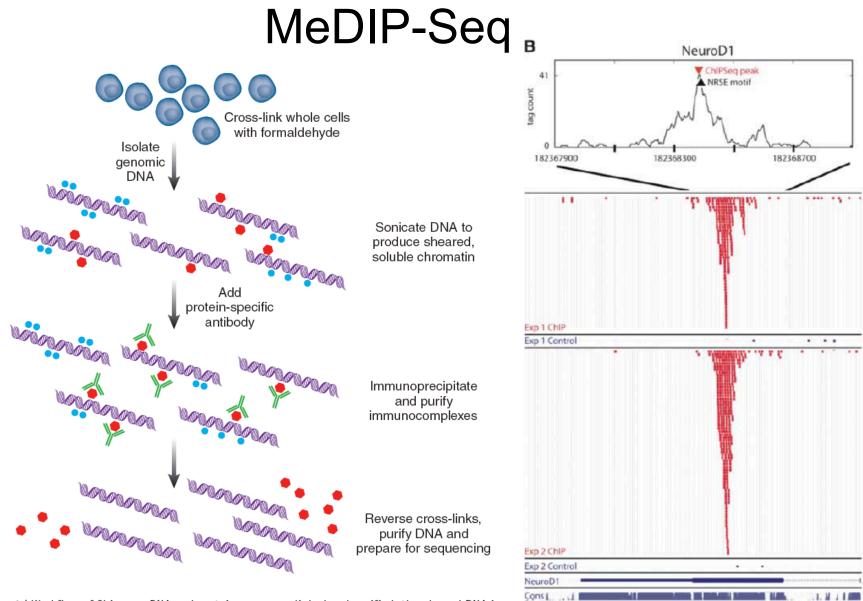
182369500

Figure 1 | Workflow of Chip-seq. DNA and proteins are cross-linked and purified; then bound DNA is analyzed by massively parallel short-read sequencing.


ChIP-Seq


Johnson et al., Science 316:1497 (2007)

Methylation profiling


- Whole genome bisulfite sequencing
- MeDIP (<u>Me</u>thylated <u>D</u>NA-<u>IP</u>)
- Reduced Representational Bisulfite Sequencing
- Specific Capture methods

Cytosine to 5-Methylcytosine to Thymine conversion

Johnson et al., Science 316:1497 (2007)

NRSE motif

chr2: 182366500

182367500

182368500

182369500

Figure 1 | Workflow of Chip-seq. DNA and proteins are cross-linked and purified; then bound DNA is analyzed by massively parallel short-read sequencing.

ogenic microorganisms that literally share our body space" (Lederberg and McCray 2001). Initial efforts to determine the numbers of microbes in a community and their phylogenetic relationships comprised analyzing the relatively well-conserved 16S rRNA genes in mixtures of organisms (Woese and Fox 1977; Stahl

¹A complete list of authors and affiliations appears at the end of the paper, before the Acknowledgments section. See also, http:// nihroadmap.nih.gov/hmp/members.asp.

²Corresponding author.

E-mail jane_peterson@nih.gov; fax (301) 480-2770.

19:2317-2323; ISSN 1088-9051/09; www.genome.org

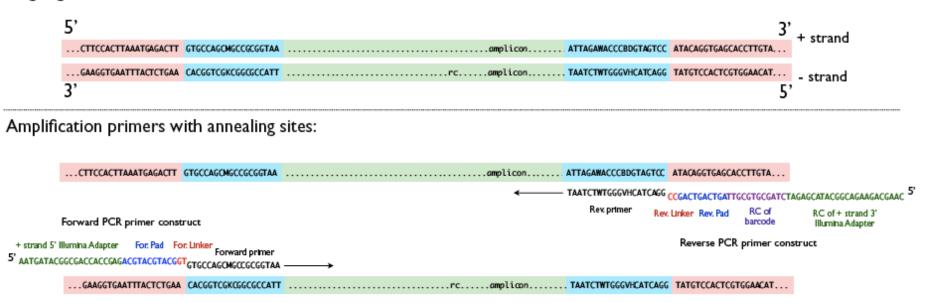
Article published online before print. Article and publication date are at http://www.genome.org/cgi/doi/10.1101/gr.096651.109. Freely available online through the *Genome Research* Open Access option.

The early studies examining the microbiome stimulated in undertaking a large-scale investigation of the human i microbiome. An international meeting was held in Par vember 2005 to discuss such an effort. This meeting, host French National Institute for Agricultural Research (IN chaired by Dusko Ehrlich, led to the recommendation the man Intestinal Metagenome Initiative (HIMI) be under define more completely the human intestinal microt health and disease. The meeting attendees also recommer an International Metagenome Consortium be formed together common efforts from around the world to acc the goals of the HIMI (http://human-microbiome.org).

Genome Research

www.genome.org

would no longer define the biology at the site as was done in order to reduce the number of exclumals it in the alignizing (aniging pagsible to ass


make it, in the clinicians' opinion, possible to rec There was concern that recruitment using a prot volunteers who were "healthy" at each site (as sample site experts) would have so many exclusi recruitment would be very slow or impossible.

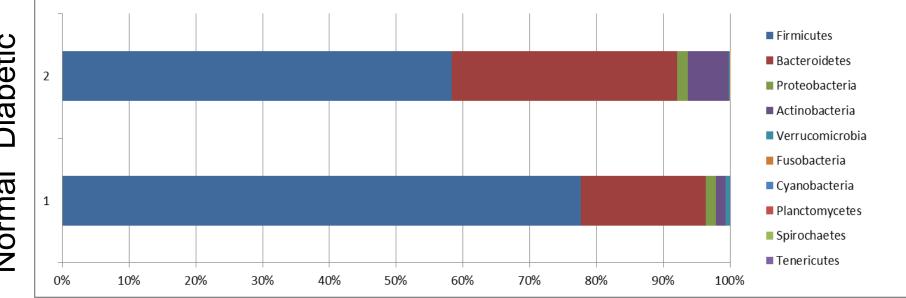
Special attention was paid to the informed cor that potential sample donors were adequately infc benefits and risks associated with participation in resource" project. A template for an informed co developed and then adapted for use at the twc sampling took place (Baylor College of Medicine a University; see http://hmpdacc.org/clinical.html for Particular attention was given in the consent prc ing donors about how their privacy would be pre limitations of the available protections. Donors that the microbiome data from the study of their sa

Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample

J. Gregory Caporaso^a, Christian L. Lauber^b, William A. Walters^c, Donna Berg-Lyons^b, Catherine A. Lozupone^a, Peter J. Turnbaugh^d, Noah Fierer^{b,e}, and Rob Knight^{a,f,1}

Target gene:

MSA after forward primer


Jalview 2.7

File Tools Vamsas Help Window

C:\Users\ranjit\Desktop\morrow-working-files\RDP\bacteria16S_508_mod5.stk

File Edit Select	View Format	Colour Calculat	e Web Service												
	750	760	770	780	790	800	810	820	830	840	850	860	870	880	
NC 007292/1-1566						GGAAIIIIACIIG			UGGU-UUGUUAA	GUCAG - AUGI				-	
NC 008769/1-1532		CAGCCGCGGUA							UGGU - UUGUCGC					1.1	
NC_008800/1-1543		CAGCCGCGGUA	AAUACGGAG -		AGCGUUAAUC	GGAAUUACUG	GGCGUAAA-	GCGCACGCAGG	CGGU-UUGUUAA	GUCAG - AUGL	JG - AAAUCCC	CGCGCUUAAC	UGGGA-A	CUGCAUUUG	=
NC_009446/1-1533	CGUGCCAG	CAGCCGCGGUA	AAUACGGAG -	GGUGCA,	AGCGUUAUUC	GGAAUGACUG	GGCGUAAA-	GCGCACGCAGG	UGGU-UUUAUAA	GUCAG-GUGL	JG - AAAUCCC	UGGGCUCAACI	CUAGGA-AL	JUGICAUUUG	
NC_008767/1-1541	CGUGCCAG	CAGCCGCGGUA	AAUACGUAG -	· · · · GGUGCG/	AGCGUUAAUC	GGAAUUACUG	GGCGUAAA-	GCGGGCGCAGA	CGGU-UACUUAA	GCAGG - AUGL	JG - AAAUCCC	CGGGCUCAAC	CCGGGA-AC	CU <mark>6</mark> C6UUCU	
NC_009445/1-1489	CGUGCCAG	CAGCCGCGGUA	AAUACGAAG -	· · · · GGGGCU/	AGCGUUGCUC	GGAAUCACUG	GGCGUAAA-	GGGUGCGUAGG	CGGG-UCUUUAA	GUCAG - GGGL	JG - AAAUCCL	GGAGCUCAACI	JCCAGA - AC	CU <mark>9</mark> CCUUU9	
NC_009443/1-1549	9 CGUGCCAG	CAGCCGCGGUA	AAUACGUAG -	GUCCCG/	AGCGUUGUCC	GGAUUUAUUG	GGCGUAAA -	GCGAGCGCAGG	CGGU - UUGAUAA	GUCUG - AAGL	JA - AAAGGCL	GUGGCUUAAC	CAUAGU-AC	C- <mark>G</mark> CUUUGG	
NC_009442/1-1549		CAGCCGCGGUA							CGGU-UUGAUAA						
NC_009441/1-1514		CAGCCGCGGUA							CGGU-UUAGUAA						
NC_009049/1-1467		CAGCCGCGGUA							CGGA-UCGGAAA						
NC_003454/1-1520		CAGCCGCGGUA							UGGU-UAUGUAA						
NC_008369/1-1528		CAGCCGCGGUA							UGGU-UUGUUAA						
NC_007722/1-1486		CAGCCGCGGUA							CGGC - UAUUUAA CGGU - GCGGUAA						
NC_008009/1-1502 NC_003450/1-1524		CAGCCGCGGUA							UGGU-UUGUCGC						
NC 002771/1-1525		CAGCCGCGGUA							UUGU-UUGUUAA						
NC 005966/1-1538		CAGCCGCGGUA							CGGC - CAAUUAA						
NC 009439/1-1536		CAGCCGCGGUA							UGGU-UCGUUAA						
NC 009438/1-1543		CAGCCGCGGUA							CGGU-UUGUUAA						
NC 009437/1-1544		CAGCCGCGGUA	AAUACGUAG.	· · · · GUGGCG/	AGCGUUGUCC	GGAAUUACUG	GGCGUAAA.	GGGUGCGUAGG	CGGC - UAUGCGA	GUUAA-GCGL	JG - AAAGCCL	UAGGCUCAAC	UAAGG - AL	JUGICGCUUA	
NC_004129/1-1539	UGUGCCAG	CAGCCGCGGUA	AAUACAGAG -		AGCGUUAAUC	GGAAUUACUG	GGCGUAAA -	GCGCGCGUAGG	UGGU - UUGUUAA	GUUGG - AUGL	JG - AAAGCCC	CGGGCUCAACI	UGGGA-A	CUGCAUCCA	
NC_009436/1-1540	CGUGCCAG	CAGCCGCGGUA	AAUACGGAG -	GGUGCA,	AGCGUUAAUC	GGAAUUACUG	GGCGUAAA-	GCGCACGCAGG	CGGU-CUGUCAA	GUCGG - AUGL	JG-AAAUCCC	CGGGCUCAAC	CUGGGA-AC	CUGCAUUCG	
NC_009434/1-1537	CGUGCCAG	CAGCCGCGGUA	AAUACGAAG -	GGUGCA/	AGCGUUAAUC	GGAAUUACUG	GGCGUAAA-	GCGCGCGUAGG	UGGU-UCGUUAA	GUUGG - AUGL	JG - AAAGCCC	CGGGCUCAAC	CUGGGA-AC	CUGCAUCCA	
Nc_008268/1-1518	CGUGCCAG	CAGCCGCGGUA	AAUACGUAG -	· · · · GGUGCA/	AGCGUUGUCC	GGAAUUACUG	GGCGUAAA -	GAGUUCGUAGG	CGGU-UUGUCGC	GUCGU-UUGL	JG - AAAACUC	ACAGCUCAACI	JGUGAG - CO	CUGCAGGCG	
NC_008752/1-1529		CAGCCGCGGUA							CGGU - GAUGUAA						
NC_008751/1-1549									CUGC - UUGGUAA						
NC_007712/1-1542									CGGU - CUGUUAA						
NC_008750/1-1543									CGGU-UUGUUAA						
NC_008358/1-1455									CGGA - CUUUUAA						
NC_004088/1-1543									CGGU-UUGUUAA						
NC_007677/1-1540									CGGG - GCAGCAA CGGA - UUGUUAA						
NC_003047/1-1485 NC 005957/1-1552		CAGEEGEGGUA							UGGU-UUCUUAA						
NC 005956/1-1488		CAGCCGCGGU							CGGA-UAUUUAA						
-			AUACOAAO.			00A000AC00.			COOX- DAUDUAA	00040-4000		AGGGCOLARCI		000000000	Ŧ
secondary structur		< _ > - • C A G c c G C G G U A	> .	· · · · · · ·	}		{ ·	· { · [· [· [· [, < . < - · · · · · · · · · · · · · · · · · ·	<	<	<pre>cggGcUuAAC(</pre>		. >	
reference position	IS COUCEAG	CAGCCGCGCG	AAUACYYJIO.		aocouugucc	GGAAUTA: 00	OOCOUAAA.		COOC.CCYCCA3	oucyy,yuoc		CUUUUUUUUUUUUUUUU	;cyyya.Aa —	acycacecy.	
Consensu	IS														
	CGUGCCAG	CAGCCGCGGUA	AA COGAG-	GGUGCA,	AGCGUUAUUC	GGAAUUACUG	GGCGUAAA -	GCGCGCGUAGG	CGGU-UUGUUAA	GUCAGUAUGL	IG - AAAUCCC	CGGGCUCAAC	UGGGA-AC	CUGCAUUUG	
															•
Sequence 13 ID	: NC_007722	Nucleotide: Uraci	il (581)												
						Income of the local data								1 50 014	
(7) (2)		O. 🧉) [1]		<u>► </u>			0					🗅 🔯 🗠	1:50 PN 10/10/20:	

Microbiome at UAB

The proportions of phylum Firmicutes and class Clostridia were significantly reduced in the diabetic group compared to the control group (P = 0.03).

Diabetic Normal