Final Exam

Calculus I; Fall 2009

Part I

Part I consists of 10 questions, each worth 5 points. Clearly show your work for each of the problems listed.

In 1-4, find
$$y'$$
 if:

$$(1) \ y = x^2 \sin(x)$$

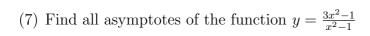
(2)
$$y = \frac{\ln(x)}{2x+1}$$

(3)
$$y = (\tan(x))^{30}$$

$$(4) y = \cos(x^3 + x)$$

(5) Find the critical points of
$$y = f(x) = x(x+1)^3$$

(6) Find all local/absolute maxima/minima of the function $y = 2x^4 - x$. Make sure to state both x and y values. (Do **not** simplify these numbers!)



(8) Find all x-values where $y = x \ln(x)$ is **increasing**

(9) Find the most general form for the ${\bf anti-}$ derivative of y=x(3x+2)

(10) Use calculus to find two positive numbers whose product is 4 and whose sum is minimal

Part II

Part II consists of 6 problems; the number of points for each part are indicated by [x pts]. You must show the relevant steps (as we did in class) and justify your answer to earn credit. Simplify your answer when possible.

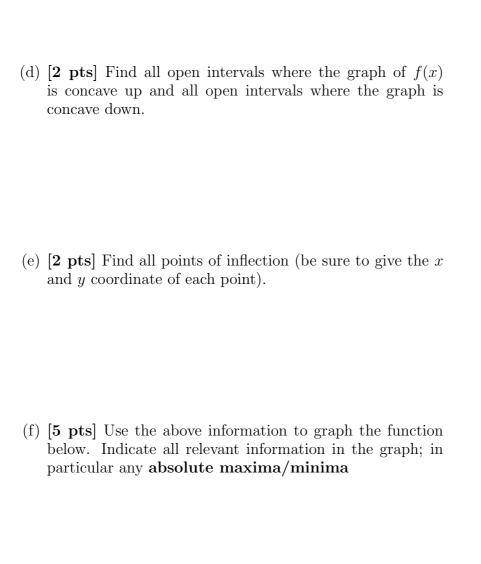
(1) [10 pts] Use implicit differentiation to find the derivative if $y^5 = x^2y - x^3$

(2) **[6 pts]** Find the linearization of the function $y = f(x) = \sqrt[4]{x}$ at x = 16.

(a) [2 pts] Find the x and y intercepts of the function.

(b) [2 pts] Find the open intervals where f(x) is increasing and the open intervals where f(x) is decreasing,

(c) [2 pts] Find the local maximum and local minimum values of f(x). (Be sure to give the x and y coordinate of each of them).



(5) [5 pts] If $y = \frac{(x-1)^2}{(x+1)^3}$ find the absolute maximum and minimum of f(x) on the interval [0, 5]. (Include the appropriate y values but do not simplify.)

(6) [10 pts] An advertising executive wants to design a can (= cylinder) which is most visible. He decides that this means that the can must have maximal surface area. The can must have a volume of 100 cm^3 . Using calculus you must either state the dimensions the can with maximal surface area or show such a can does not exist. [Given a can of radius r and height h its volume $V = \pi r^2 h$ and its surface area $S = 2\pi r h + 2\pi r^2$.]